Xét 3 số tự nhiên liên tiếp: 2n - 1; 2n; 2n + 1, trong 3 số này có 1 số chia hết cho 3
Do (2;3)=1 nên (2n;3)=1
=> trong 2 số 2n - 1; 2n + 1 có 1 số chia hết cho 3
=> 2n - 1 và 2n + 1 không thể đồng thời là 2 số nguyên tố (đpcm)
Xét 3 số tự nhiên liên tiếp: 2n - 1; 2n; 2n + 1, trong 3 số này có 1 số chia hết cho 3
Do (2;3)=1 nên (2n;3)=1
=> trong 2 số 2n - 1; 2n + 1 có 1 số chia hết cho 3
=> 2n - 1 và 2n + 1 không thể đồng thời là 2 số nguyên tố (đpcm)
Chứng minh rằng các số sau là các SNT cùng nhau
a) n+5 , n+6
b) 2n+3 và n+2
c) 16n+5 ,24n+7
d) 2n + 3 , 4n+8
Đề bài: Chứng minh rằng 1.3.5. … .(2n-1) / (n+1).(n+2). … .2n = 1/2n. Đề bài: Chứng minh rằng 1.3.5. … .(2n-1) / (n+1).(n+2). … .2n = 1/2n.
Ai làm đc mk bái làm sư phụ và TICK luôn. Nhanh lên nhé, mai mk phải nộp rùi.
Chứng minh rằng
n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc N
Chứng minh rằng các số nguyên tố cùng nhau
a) 2n+1 và 2n+2
b) n+1 và 3n+4
c) n+3 và 2n+5
Chứng minh rằng với n thuộc N sao, phân số sau là phân số tối giản
\(\dfrac{n^3+2n}{n^4+3n^2+1}\)
a) Nếu p là SNT lớn hơn 3 và 2p + 1 cũng là SNT thì 4p + 1 là SNT hay hợp số?
b) Tìm ƯC của hai số 2n + 1 và 3n + 1 ( n \(\in\) N )
c) Tìm tất cả các ước chung của 5n + 6 và 8n + 7
Chứng tỏ n và 2n +1 là 2 số nguyên tố cùng nhau (n thuộc N)
Chứng minh : \(\dfrac{n.\left(n+1\right)}{2}\) và 2n + 1 nguyên tố cùng nhau với mọi n thuộc N
chứng tỏ n và 2n+1 là 2 số nguyên tố cùng nhau(n thuộc tập hợp N)