Gọi ƯCLN(2n+1 ; n ) là d
=> ( 2n + 1 ) - 2n \(⋮\) d
=> 1 \(⋮\) d
=> d = 1
Vậy ..........
Gọi ƯCLN(2n+1 ; n ) là d
=> ( 2n + 1 ) - 2n \(⋮\) d
=> 1 \(⋮\) d
=> d = 1
Vậy ..........
Chứng tỏ n và 2n +1 là 2 số nguyên tố cùng nhau (n thuộc N)
Chứng tỏ rằng n+1 và 3n+4 (n thuộc N) là hai số nguyên tố cùng nhau
Cho n thuộc N,CMR : 2n + 1 và 3n + 1 là 2 số nguyên tố cùng nhau .
Cho 2 STN m và n là 2 số nguyên tố cùng nhau và thỏa mãn (m^2 + n^2) chia hết cho m.n. Chứng tỏ rằng m = n = 1.
Chứng minh rằng các số nguyên tố cùng nhau
a) 2n+1 và 2n+2
b) n+1 và 3n+4
c) n+3 và 2n+5
tìm các ƯC của các cặp số sau từ đó suy ra các cặp số nào nguyên tố cùng nhau vs n thuộc N
a) 2n+1 và 3n+1
b) 5n+6 và 8n+7
c)7n+10 và 5n+7
d) n^2+2n+2 và n+1
1.Chứng Minh Các Số Nguyên Tố Cùng Nhau
a, 2n và 2n+1
b, 3n+4 và 4n+5
c, 12n+3 và 16n+3
2. Tìm x,y \(\in\) N,để
y.(x+3)=12
cho n>2 và n thuộc N,n và 6 là 2 số nguyên tố cùng nhau.Chứng minh rằng n2_1 chia hết cho 24
Chứng minh rằng cặp số sau nguyên tố cùng nhau với mọi số tự nhiên n:
n và n+1