Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ღ₣ąкë ₤๏νëღ
Xem chi tiết
Đinh Hoàng Nhất Quyên
Xem chi tiết
Shinichi Kudo
15 tháng 7 2023 lúc 19:36

Có:

\(x\sqrt{x}+y\sqrt{y}-x\sqrt{y}-y\sqrt{x}\ge0\)

\(x\left(\sqrt{x}-\sqrt{y}\right)-y\left(\sqrt{x}-\sqrt{y}\right)\ge0\)

\(\left(x-y\right)\left(\sqrt{x}-\sqrt{y}\right)\ge0\)

\(\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\ge0\)

\(\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)\ge0\)  (luôn đúng)

Dấu = xảy ra khi x=y

Nguyên Nguyễn
Xem chi tiết
Trần Tuấn Hoàng
18 tháng 5 2022 lúc 17:04

\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng với \(\forall x,y\))

-Vậy BĐT đã được c/m.

-Dấu "=" xảy ra khi \(x=y\)

Lê Minh Tú
18 tháng 5 2022 lúc 17:11

ta co

vt (x+y)2=x2+y2+2xy

=x2-2xy+y2+4xy≥ 4xy (dpcm)

 

Đào Anh Phương
Xem chi tiết
Xyz OLM
17 tháng 8 2021 lúc 18:34

Ta có : \(27xyz\le\left(x+y+z\right)^3\)

<=> \(\left(x+y+z\right)^3-27xyz\ge0\)

<=> (x + y)3 + 3(x + y)z(x + y + z) + z3 - 27xyz \(\ge0\)

=> x3 + y3 + 3xy(x + y) + 3(x + y)z(x + y + z) + z3 - 27xyz \(\ge\)

<=> (x3 + y3 + z3) + 3(x + y)[xy + z(x + y + z)] - 27xyz \(\ge0\)

<=> (x3 + y3 + z3) + 3(x + y)(y + z)(z + x) - 27xyz   \(\ge0\)

mà  x + y \(\ge2\sqrt{xy}\)

Thật vậy x + y \(\ge2\sqrt{xy}\)

=> (x + y)2 \(\ge\)4xy 

<=> x2 - 2xy + y2  \(\ge\) 0

<=> (x - y)2 \(\ge\)0 (đúng \(\forall x;y>0\))

Tương tự ta được y + z \(\ge2\sqrt{yz}\)

z + x \(\ge2\sqrt{xz}\)

Khi đó 3(x + y)(y + z)(z + x) \(\ge3.2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=24xyz\)(dấu "=" xảy ra khi x = y = z)

=> (x3 + y3 + z3) + 3(x + y)(y + z)(z + x) - 27xyz   \(\ge0\)

<=> (x3 + y3 + z3) + 24xyz - 27xyz \(\ge0\)

<=> x3 + y3 + z3 - 3xyz   \(\ge0\)

<=> (x + y + z)[(x - y)2 + (y - z)2 + (z - x)2\(\ge\)0 (đúng)

=> ĐPCM

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 5 2018 lúc 12:35

Thực hiện phép nhân đa thức với đa thức ở vế trái

=> VT = VP (đpcm)

Lê Thanh Kiệt
Xem chi tiết
Nguyễn Quỳnh Chi
3 tháng 8 2016 lúc 10:06

Ta có:

\(\frac{1}{x+y}\) \(\le\)\(\frac{1}{4}\)(\(\frac{1}{x}\)+\(\frac{1}{y}\))

=> \(\frac{1}{x+y}\)\(\le\)\(\frac{x+y}{4xy}\)

=> 4xy \(\le\)(x+y)2

=> 2xy \(\le\)x2+y2

x^2 +y ^2-2xy luôn lớn hơn hoặc bằng 0 nhé! Vội quá, không giải nữa nha!

My Uyen
Xem chi tiết
Nguyễn Huy Tú
16 tháng 8 2021 lúc 14:25

\(xy\le\frac{\left(x+y\right)^2}{4}\)( bđt cauchy ) 

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)( bđt cauchy ) 

\(\Rightarrow\frac{x}{y}+\frac{y}{x}+\frac{xy}{\left(x+y\right)^2}\ge2+\frac{\frac{\left(x+y\right)^2}{4}}{\left(x+y\right)^2}=2+\frac{1}{4}=\frac{9}{4}\)

Khách vãng lai đã xóa
GV
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 12 2022 lúc 14:34

\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)

\(=1+x^2+y^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)\)

\(=\left(x^2+y^2+2xy\right)+\left(x^2y^2+2xy+1\right)+2\left(x+y\right)\left(1+xy\right)\)

\(=\left(x+y\right)^2+\left(1+xy\right)^2+2\left(x+y\right)\left(1+xy\right)\)

\(=\left(x+y+1+xy\right)^2\) là SCP

Nguyễn thành Đạt
24 tháng 12 2022 lúc 14:38

(1+x2)(1+y2)+4xy+2(x+y)(1+xy)

 = 1+y2+x2+x2y2+2xy+2xy+2(x+y)(1+xy)

 =(x2+2xy+y2)+(x2y2+2xy+1)+2(x+y)(1+xy)

 =(x+y)2+(xy+1)2+2(x+y)(1+xy)

 =(x+y+xy+1)2

 

Lâm Ánh Yên
Xem chi tiết
Hồng Phúc
2 tháng 3 2021 lúc 12:39

Áp dụng BĐT Cosi:

\(\dfrac{x^2}{1+16x^4}+\dfrac{y^2}{1+16y^4}\le\dfrac{x^2}{8x^2}+\dfrac{y^2}{8y^2}=\dfrac{1}{4}\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=\pm\dfrac{1}{2}\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)