Tìm x biết (X+2)^2-x^2+4=0
tìm x biết x^2 (x^2+ 4 ) - x^2 -4 = 0
\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=1\\x^2=-4\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\pm1\)
Tìm x biết (x^2-2)^2+4(x-1)^2-4(x^2-2)(x-1)=0
$(x^2-2)^2+4(x-1)^2-4(x^2-2)(x-1)=0$
$\Leftrightarrow(x^2-2)^2-4(x^2-2)(x-1)+4(x-1)^2=0$
$\Leftrightarrow(x^2-2)^2-2\cdot(x^2-2)\cdot2(x-1)+[2(x-1)]^2=0$
$\Leftrightarrow[(x^2-2)-2(x-1)]^2=0$
$\Leftrightarrow(x^2-2-2x+2)^2=0$
$\Leftrightarrow(x^2-2x)^2=0$
$\Leftrightarrow x^2-2x=0$
$\Leftrightarrow x(x-2)=0$
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy: $x\in\{0;2\}$.
tìm x , biết :
a, ( x mũ 3 - 4 x mũ 2 ) - ( x -4 ) = 0
b, x mũ 5 - 9x = 0
c, ( x mxu 3 - x mũ 2 ) mũ 2 - 4 x mũ 2 + 8x - 4 = 0
a/
\(x^3-4x^2-\left(x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=-1\end{matrix}\right.\)
b/
\(x^5-9x=0\)
\(\Leftrightarrow x\left(x^4-9\right)=x\left(x^2-3\right)\left(x^2+3\right)=0\)
\(\Leftrightarrow x\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
c/
\(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)
\(\Leftrightarrow x^4\left(x-1\right)^2-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^4-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2-2\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\pm\sqrt{2}\end{matrix}\right.\)
BT9: Tìm x biết
\(1,x^2-9=0\)
\(2,25-x^2=0\)
\(3,-x^2+36=0\)
\(4,4x^2-4=0\)
`@` `\text {Ans}`
`\downarrow`
`1,`
`x^2 - 9 = 0`
`<=> x^2 = 0 + 9`
`<=> x^2 = 9`
`<=> x^2 = (+-3)^2`
`<=> x = +-3`
Vậy, `S = {3; -3}`
`2,`
`25 - x^2 = 0`
`<=> x^2 = 25 - 0`
`<=> x^2 = 25`
`<=> x^2 = (+-5)^2`
`<=> x = +-5`
Vậy,` S= {5; -5}`
`3,`
`-x^2 + 36 = 0`
`<=> -x^2 = 0 - 36`
`<=> -x^2 = -36`
`<=> x^2 = 36`
`<=> x^2 = (+-6)^2`
`<=> x = +-6`
Vậy, `S= {6; -6}`
`4,`
`4x^2 - 4 = 0`
`<=> 4x^2 = 0+4`
`<=> 4x^2 = 4`
`<=> x^2 = 4 \div 4`
`<=> x^2 = 1`
`<=> x^2 = (+-1)^2`
`<=> x = +-1`
Vậy, `S= {1; -1}`
`@` `\text {Kaizuu lv uuu}`
5A. Tìm x, biết:
a) 8x(x - 2017) - 2x + 4034 = 0; b)
x + x2
2 8
= 0;
c) 4 - x = 2( x -4)2; d) (x2 + 1)(x - 2) + 2x = 4.
5B. Tìm x, biết:
a) x4 -16x2 =0; c) x8 + 36x4 =0;
b) (x - 5)3 - x + 5 = 0; d) 5(x - 2 ) - x2 + 4 = 0.
a: \(8x\left(x-2017\right)-2x+4034=0\)
\(\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)
Tìm x, biết:
a) x(x-2)+x-2=0
b) 2/3x( x^2-4) =0
g)(x+2)^2 -x+4=0
h)(x+2)^2= (2x-1)^2
a) x(x - 2) + (x - 2) = 0
=> (x + 1)(x - 2) = 0
=> \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy \(x\in\left\{-1;2\right\}\)
b) \(\frac{2}{3}x\left(x^2-4\right)=0\)
=> x(x2 - 4) = 0
=> \(\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=2^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
g) (x + 2)2 - x + 4 = 0
=> x2 + 4x + 4 - x + 4 = 0
=> x2 + 3x + 8 = 0
=> (x2 + 3x + 9/4) + 23/4 = 0
=> (x + 3/2)2 + 23/4 \(\ge\frac{23}{4}>0\)
=> Phương trình vô nghiệm
h) (x + 2)2 = (2x - 1)2
=> (x + 2)2 - (2x - 1)2 = 0
=> (x + 2 - 2x + 1)(x + 2 + 2x - 1) = 0
=> (-x + 3)(3x + 1) = 0
=> \(\orbr{\begin{cases}-x+3=0\\3x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-\frac{1}{3}\end{cases}}\)
=> \(x\in\left\{3;-\frac{1}{3}\right\}\)
a) x( x - 2 ) + x - 2 = 0
⇔ x( x - 2 ) + 1( x - 2 ) = 0
⇔ ( x - 2 )( x + 1 ) = 0
⇔ \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b) 2/3x( x2 - 4 ) = 0
⇔ \(\orbr{\begin{cases}\frac{2}{3}x=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
g) ( x + 2 )2 - x + 4 = 0
⇔ x2 + 4x + 4 - x + 4 = 0
⇔ x2 + 3x + 8 = 0 (*)
Ta có : x2 + 3x + 8 = ( x2 + 3x + 9/4 ) + 23/4 = ( x + 3/2 )2 + 23/4 ≥ 23/4 > 0 ∀ x
=> (*) không xảy ra
=> Pt vô nghiệm
h) ( x + 2 )2 = ( 2x - 1 )2
⇔ ( x + 2 )2 - ( 2x - 1 )2 = 0
⇔ [ ( x + 2 ) - ( 2x - 1 ) ][ ( x + 2 ) + ( 2x - 1 ) ] = 0
⇔ ( x + 2 - 2x + 1 )( x + 2 + 2x - 1 ) = 0
⇔ ( 3 - x )( 3x + 1 ) = 0
⇔ \(\orbr{\begin{cases}3-x=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-\frac{1}{3}\end{cases}}\)
Tìm x biết a) x(x-25)=0 b)2x(x-4)-x(2x-1)=-28 c)x^2 -5x=0 d)(x-2)^2-(x+1)(x+3)=-7 e)(3x+5).(4-3x)=0 f)x^2-1/4=0
a: \(x\in\left\{0;25\right\}\)
c: \(x\in\left\{0;5\right\}\)
Tìm x biết:
a) x 2 + 3 x = 0 b) x ( 2x − 1) + 4x − 2=0 c) ( x 2 + 2 x )2 − 2 x 2 − 4 x = 3
a. x( x+ 3)= 0
⇔ x= 0 hoặc x+ 3= 0
⇔ x= 0 x = -3
b. x( 2x− 1)+ 2( 2x− 1) =0
⇔ ( 2x− 1)(x+ 2) =0
⇔ 2x− 1 =0 hoặc x+ 2 =0
⇔ 2x =1 x = -2
⇔ x =\(\dfrac{1}{2}\) x = -2
Giải đầy đủ hộ mình nhé :
Bài 1: Tìm x,y,;biết
a, x+y=2
b,y+z=3
c,z+x=-5
Bài 2 : Tìm x,y thuộc Z, biết (x-3).(y+2)=-5
Bài 3 : Tìm a thuộc Z, biết a.(a+2)<0
Bài 4 : Tìm x thuộc Z, sao cho (x2 -4).(x2-10)<0
Bài 5 Tìm x thuộc Z, biết (x2-1).(x2-4)<0
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
Tìm x biết: x^2 -4 -2*(x+2) = 0
x=4 và x= -2
cần lười giải chi tiết thì nói nha
\(x^2-4-2(x+2)=0 \)
\(\Leftrightarrow (x-2)(x+2)-2(x+2)=0 \)
\(\Leftrightarrow (x+2)(x-2-2)=0 \)
\(\Leftrightarrow (x+2)(x-4)=0 \)
\(\Leftrightarrow x=-2\) hoặc \(x=4\)