Tìm số tự nhiên n sao cho:
a) (3n+7)chia hết (2n+1)
b) (5n+1)chia hết (2n+6)
tìm số tự nhiên n sao cho
a) (3n+7) chia hết (2n+1)
b) (5n+1)chia hết (2n+6)
(7n+13)chia hết (5n+4)
Tìm STN n sao cho:
a) (4n - 7) chia hết cho (n - 1)
b) (5n - 8) chia hết cho (4 - n)
c) (10 - 2n) chia hết cho (n - 2)
d) (n^2 + 3n + 6) chia hết cho (n + 3)
a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)
\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)
c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)
Tìm số tựn nhiên n sao cho
3n+5 chia hết cho ?
18-5n chia hết cho n
2n+7 chia hết cho n+1
2n+1 chia hết cho 6 - n
3n chia hết cho 5-2n
Bài 4: Tìm số tự nhiên n sao cho:
a) 4n - 5 chia hết cho 2n - 1
b) n2 + 3n + 1 chia hết cho n +1
a,
Ta có: 4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>2.(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1=Ư(3)=(-1,-3,1,3)
=>2n=(0,-2,2,4)
=>n=(0,-1,1,2)
Vậy n=0,-1,1,2
Câu 1.Tìm n thuộc tập hợp số tự nhiên:
a) n+4 chia hết cho n
b) 3n + 7 chia hết cho n
c) 27- 5n chia hết cho n
Câu 2.Tìm n thuộc tập hợp số tự nhiên sao cho:
a)n+6 chia hết cho n+2
b)2n+3 chia hết cho n-2
c) 3n +1 chia hết cho 11 - 2n.
tìm số tự nhiên n sao cho:
a) n+2 chia hết cho n-1
b)2n+7 chia hết cho n+1
c)2n+1 chia hết cho 6-n
d)3n chia hết cho 5-2n
e)4n+3 chia hết cho 2n+6
a) n + 2 chia hết cho n - 1
=> n - 1 + 3 chia hết cho n - 1
Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1
Mà n thuộc N => n - 1 > hoặc = -1
=> n - 1 thuộc {-1 ; 1 ; 3}
=> n thuộc {0 ; 2 ; 4}
Những câu còn lại lm tương tự
Giải:
a) \(n+2⋮n-1\)
\(\Rightarrow\left(n-1\right)+3⋮n-1\)
\(\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)
+) \(n-1=1\Rightarrow n=2\)
+) \(n-1=-1\Rightarrow n=0\)
+) \(n-1=3\Rightarrow n=4\)
+) \(n-1=-3\Rightarrow n=-2\)
Vậy \(n\in\left\{2;0;4;-2\right\}\)
b) \(2n+7⋮n+1\)
\(\Rightarrow\left(2n+2\right)+5⋮n+1\)
\(\Rightarrow2\left(n+1\right)+5⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=-1\Rightarrow n=-2\)
+) \(n+1=3\Rightarrow n=2\)
+) \(n+1=-3\Rightarrow n=-4\)
Vậy \(n\in\left\{0;-2;2;-4\right\}\)
a) n+2 chia hết cho n-1
=>n-1+3 chia hết cho n-1
=>3 chia hết cho n-1
b)2n+7 chia hết cho n+1
=>2(n+1)+5 chia hết cho n+1
=>5 chia hết cho n+1
c) 2n+1 chia hết cho 6-n
=>2(6-n)+13 chia hết cho 6-n
13 chia hết cho 6-n ( bài này không chắc )
d) 3n chia hết cho 5-2n ( ko bt làm )
e) 4n+3 chia hết cho 2n+6
=>4n+3 chia hết cho 4n+12 ( vô lí )
Tìm số tự nhiên n, sao cho:
a. n+2 chia hết cho n-1
b. 2n+7 chia hết cho n+1
c.2n+1 chia hết cho 6-n
d. 3n chia hết cho 5-2n
e. 4n+3 chia hết cho 2n+6
Vì 3 n chia hết cho (5-2n)
=>2.3n+3(5-2n)=15 chia hết cho 5-2n
=>5-2n thuộc Ư(15)={1,3,5,15,-1,-3-5-15}
Mặt khác 5-2n nhỏ hơn hoặc bằng 5
5-2n thuộc {-15,-5,-3,-1,1,3,5}
=>N thuộc { 10,5,4,3,2,1,0}
Vì 3n chia hết cho 5-2n
=>2.3n+3(5-2n)=15 chia hết cho 5 - 2n
=> 5-2n thuộc U (15)€{1,3,5,15,-1,-3,-5,-15}
Mặt khác 5 trừ 2 n nhỏ hơn hoặc bằng 5
=>5-2n€{-15,-5,-3,-1,1,3,5}
=>N€{10,5,4,3,2,1,0}
1.Tìm số tự nhiên sao cho:
a, 2n + 7 chia hết cho n+1
b, 2n + 1 chia hết cho 6 - n
c, 3n chia hết cho 5 - 2n
d, 3n chia hết cho 2n + 6
e,n+3 chia hết cho n - 1
f,4n + 3 chia hết cho 2n - 1
2. CMR: 1 số đc ghi bởi 6 chữ số giống nhau ( VD: 777777) thì chia hết cho 37037
Bài 4: Chứng minh rằng:
a) \(4^{10}+4^7\) chia hết cho 65
b) \(10^{10}-10^9-10^8\) chia hết cho 89
Bài 5. Tìm số tự nhiên n để:
a) 5n+4 chia hết cho n
b) n+6 chia hết cho n+2
c) 3n+1 chia hết cho n-2
d) 3n+9 chia hết cho 2n-1
Bài 6: chứng minh rằng:
\(\overline{abab}\) chia hết cho 101
\(\overline{abc-\overline{cba}}\) chia hết cho 9 và 11
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)