Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Tử Lớp Học
Xem chi tiết
Hoàng Phúc
20 tháng 11 2016 lúc 10:02

\(0\le x,y,z\le1\) nên \(\left(x,y,z\right)=\left(0,0,0\right);\left(0,0,1\right);\left(0,1,0\right);\left(1,0,0\right);\left(1,0,1\right);\left(0,1,1\right);\left(1,1,1\right);\left(1,1,0\right)\)

thay các giá trị trên vào bt \(x+y+z-xy-yz-xz\) đều thấy t/mãn nó \(\le1\)

ko chắc vì đề chưa cho x,y,z nguyên

Tôi Là Ai
Xem chi tiết
alibaba nguyễn
24 tháng 11 2016 lúc 11:36

Ta có 

x + y + z - xy - yz - xz \(\le1\)

\(\Leftrightarrow\left(1-x\right)+\left(xy-y\right)+\left(yz-xyz\right)+\left(xz-z\right)+xyz\ge0\)

\(\Leftrightarrow\left(1-x\right)\left(1-y-z+yz\right)+xyz\ge0\)

\(\Leftrightarrow\left(1-x\right)\left(\left(1-y\right)+\left(-z+yz\right)\right)+xyz\ge0\)

\(\Leftrightarrow\left(1-x\right)\left(1-y\right)\left(1-z\right)+xyz\ge0\)

Đúng vì theo đề ta có: \(\hept{\begin{cases}1-x\ge0\\1-y\ge0\\1-z\ge0\end{cases}}\)và \(\hept{\begin{cases}x\ge0\\y\ge0\\z\ge0\end{cases}}\)

Vậy ta có ĐPCM

Nơi gió về
Xem chi tiết
pham trung thanh
3 tháng 5 2018 lúc 20:10

\(Do\)\(x;y\le1\Rightarrow x\ge xy\Rightarrow x-xy\ge0\)

Tương tự cộng vào đc ... >=0

Xét \(\left(1-x\right)\left(1-y\right)\left(1-z\right)\ge0\)

\(\Leftrightarrow1-\left(x+y+x\right)+\left(xy+yz+zx\right)-xyz\ge0\)

\(\Leftrightarrow x+y+z-xy-yz-zx\le1-xyz\le1\)

Thỏ bông
Xem chi tiết
Ngân Bướm To
Xem chi tiết
Kiệt Nguyễn
26 tháng 12 2019 lúc 10:04

Ta có: \(\left(x-\sqrt{yz}\right)^2\ge0\Rightarrow x^2+yz\ge2x\sqrt{yz}\)(Dấu "="\(\Leftrightarrow x^2=yz\))

Theo đề: x + y + z = 3\(\Rightarrow3x+yz=\left(x+y+z\right)x+yz=x^2+yz+x\left(y+z\right)\)\(\ge x\left(y+z\right)+2x\sqrt{yz}\)

Suy ra \(\sqrt{3x+yz}\ge\sqrt{x\left(y+z\right)+2x\sqrt{yz}}=\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)\)

và \(x+\sqrt{3x+yz}\ge\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

\(\Rightarrow\frac{x}{x+\sqrt{3x+yz}}\le\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Tương tự ta có: \(\frac{y}{y+\sqrt{3y+zx}}\le\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\);\(\frac{z}{z+\sqrt{3z+xy}}\le\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Cộng từng vế của các BĐT trên,ta được:

\(\frac{x}{x+\sqrt{3x+yz}}\)\(+\frac{y}{y+\sqrt{3y+zx}}\)\(+\frac{z}{z+\sqrt{3z+xy}}\le1\)

(Dấu "="\(\Leftrightarrow x=y=z=1\))

Khách vãng lai đã xóa
Nyatmax
26 tháng 12 2019 lúc 10:18

We have:

\(VT=\Sigma_{cyc}\frac{x}{x+\sqrt{3x+yz}}=\Sigma_{cyc}\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}=\Sigma_{cyc}\frac{\frac{x}{\sqrt{\left(x+y\right)\left(z+x\right)}}}{\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+1}\)

Dat \(\left(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}};\frac{y}{\sqrt{\left(x+y\right)\left(y+z\right)}};\frac{z}{\sqrt{\left(x+z\right)\left(y+z\right)}}\right)=\left(a;b;c\right)\)

Consider:

\(\Sigma_{cyc}\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\Sigma_{cyc}\frac{\frac{x}{x+y}+\frac{x}{x+z}}{2}=\frac{3}{2}\)

\(\Rightarrow a+b+c\le\frac{3}{2}\)

Now we need to prove:

\(\Sigma_{cyc}\frac{a}{a+1}\le1\)

\(\Leftrightarrow\Sigma_{cyc}\frac{1}{a+1}\ge2\left(M\right)\)

\(VT_M\ge\frac{9}{a+b+c+3}\ge\frac{9}{\frac{3}{2}+3}=2\)

Sign '=' happen when \(\hept{\begin{cases}x=y=z=1\\a=b=c=\frac{1}{2}\end{cases}}\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
12 tháng 1 2020 lúc 8:25

theo BĐT Bunhiacopski ta có:

\(\sqrt{3x+yz}=\sqrt{\left(x+y+z\right)\cdot x+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\ge\sqrt{xz}+\sqrt{xy}\)

\(\Rightarrow\frac{x}{x+\sqrt{3x+yz}}\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Thiết lập các bất đẳng thức tương tự rồi cộng lại:

\(LHS\le\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

Dấu "=" xảy ra tại x=y=z=1

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Vương Đức Hà
28 tháng 7 2020 lúc 15:42

ủa đây là toám lớp 1 hả anh

Khách vãng lai đã xóa
Phan Nghĩa
28 tháng 7 2020 lúc 15:45

cauchy phần mẫu @@

Khách vãng lai đã xóa
WTFシSnow
28 tháng 7 2020 lúc 15:49

Forever_Alone tên là Anh nhưng ko bt họ

Khách vãng lai đã xóa
Nguyễn Minh Huy
Xem chi tiết
Tran Le Khanh Linh
31 tháng 7 2020 lúc 20:42

vì 0<x,y,z\(\le\)1 nên (1-x)(1-y) >=0 <=> 1+xy >= x+y

<=> 1+z+xy >= x+y+z

<=> \(\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\left(1\right)\)

tương tự có \(\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\left(2\right);\frac{z}{1+x+xy}\le\frac{z}{x+y+z}\left(3\right)\)

cộng theo vế của (1), (2), (3) ta được

\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{x+y+z}{x+y+z}\le\frac{3}{x+y+z}\)

dấu "=" xảy ra khi x=y=z=1

Khách vãng lai đã xóa
HD Film
30 tháng 7 2020 lúc 8:28

\(\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\text{Σ}\frac{x}{x^2+xy+zx}=\text{Σ}\frac{x}{x\left(x+y+z\right)}=\frac{3}{x+y+z}\)

Do \(1\ge x^2\)và \(y\ge xy\)

Dấu = xảy ra khi x = y = z = 1

Khách vãng lai đã xóa
Kiệt Nguyễn
1 tháng 11 2020 lúc 19:57

Xét biểu thức:\(\frac{x}{1+y+zx}-\frac{1}{x+y+z}=\frac{x\left(x+y+z\right)-\left(1+y+zx\right)}{\left(1+y+zx\right)\left(x+y+z\right)}=\frac{x^2+xy-1-y}{\left(1+y+zx\right)\left(x+y+z\right)}=\frac{\left(x+y+1\right)\left(x-1\right)}{\left(1+y+zx\right)\left(x+y+z\right)}\le0\)(Đúng vì \(x,y,z>0;x\le1\))

\(\Rightarrow\frac{x}{1+y+zx}\le\frac{1}{x+y+z}\)

Tương tư, ta có: \(\frac{y}{1+z+xy}\le\frac{1}{x+y+z}\)\(\frac{z}{1+x+yz}\le\frac{1}{x+y+z}\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)

Đẳng thức xảy ra khi x = y = z = 1

Khách vãng lai đã xóa
Nguyễn Thu Huyền
Xem chi tiết
hiền nguyễn
Xem chi tiết