Tìm GTLL của biểu thức A = 1,5 + /2+x/
Tìm gtll và gtnn của biểu thức \(\frac{x}{x+\sqrt{x}+1}\)
tìm GTLL của biểu thức A=\(\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
GIẢI CHI TIẾT GIÚP MK NHA
ta có \(A=\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)
\(=\sqrt{\frac{1}{x}-\frac{1}{x^2}}+\sqrt{\frac{1}{y}-\frac{2}{y^2}}+\sqrt{\frac{1}{z}-\frac{3}{x^2}}=\sqrt{\frac{1}{4}-\left(\frac{1}{x^2}-2.\frac{1}{2}x+\frac{1}{4}\right)}+\sqrt{\frac{1}{8}-\left(\left(\sqrt{2}y\right)^2-2.\frac{\sqrt{2}}{2\sqrt{2}}x+\frac{1}{8}\right)}+\sqrt{\frac{1}{2}-\left(\left(\sqrt{3}z\right)^2-\frac{1}{z}+\frac{1}{12}\right)}\)
\(=\sqrt{\frac{1}{4}-\left(\frac{1}{x}-\frac{1}{2}\right)^2}+\sqrt{\frac{1}{8}-\left(\frac{\sqrt{2}}{y}-\frac{1}{2\sqrt{2}}\right)^2}+\sqrt{\frac{1}{12}-\left(\frac{\sqrt{3}}{z}-\frac{1}{2\sqrt{3}}\right)^2}\)
ta có \(\sqrt{\frac{1}{4}-\left(\frac{1}{x}-\frac{1}{2}\right)^2}\le\frac{1}{2}\) ; \(\sqrt{\frac{1}{8}-\left(\frac{\sqrt{2}}{y}-\frac{1}{2\sqrt{2}}\right)^2}\le\frac{1}{2\sqrt{2}}\); \(\sqrt{\frac{1}{12}-\left(\frac{\sqrt{3}}{z}-\frac{1}{2\sqrt{3}}\right)^2}\le\frac{1}{2\sqrt{3}}\)
vậy giá trị lớn nhất của A =\(\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\) khi x=; y=4;z=6
Tìm GTLL của biểu thức :
P= 2x^2-2x+5/x^2-4x+4
\(P=\dfrac{2x^2-2x+5}{x^2-4x+4}=\dfrac{x^2-4x+4+x^2+2x+1}{x^2-4x+4}=1+\dfrac{\left(x+1\right)^2}{\left(x-2\right)^2}\)Do : \(\dfrac{\left(x+1\right)^2}{\left(x-2\right)^2}\) ≥ 0 ∀x
⇒ \(\dfrac{\left(x+1\right)^2}{\left(x-2\right)^2}\) + 1 ≥ 1
⇒ \(P_{Min}=1\) ⇔ x = - 1
P/s : Day la tim GTNN nha
1)Tìm giá trị lớn nhất của các biểu thức:
a) A=1,5-|x-4,5|
b)B=-|1,8-x|-3
c)C= -4,5-|x-1,5|
2) Tìm giá trị nhỏ nhất của các biểu thức:
a)A=3,5+|1,5-x|
b)B=|x+5,2|-2,5
Tìm GTLL của biểu thức;
A=(x-1)(x-3)+11
giúp mình với mai mình kt rồi iiiii
\(A=x^2-4x+3+11\)
\(A=x^2-4x+14\)
\(A=x^2-4x+4+10\)
\(A=\left(x-2\right)^2+10\ge10\)
Dấu = xảy ra khi \(x-2=0\Leftrightarrow x=2\)
vậy \(A_{min}=10\) khi x =2
Bài 1:Tìm giá trị nhỏ nhất của biểu thức sau
a) A=|x|+6/13
b)B=|x+1,5| - 5,7
Bài 2:Tìm giá trị lớn nhất của biểu thức sau
a)10+|1/2-x|
b)|x+1,5|-5,7
Bài 3: Tìm giá trị lớn nhất của biểu thức sau
a) C=1,5-|x+2,1|
b)D= -5,7-|2,7-x|
c)A=-|x+8/139|+141/272
B1Tìm GTLN
a) 2+|x+3|
b) 3/2+|2x-1|
B2 Cho biểu thức A=3|a|+2/4|a|-5
Tìm a thuộc Z để a đạt GTLN, tìm GTLN đó
P/s: GTLL: GIÁ TRỊ LỚN NHẤT
GTNN: GIÁ TRỊ NHỎ NHẤT
Ai làm được thanh kiu
\(a)A=2+|x+3|\)
Vì \(|x+3|\ge0\)\(\forall x\)
\(\Rightarrow2+|x+3|\ge2\)\(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy \(Max_A=2\Leftrightarrow x=-3\)
\(b)B=\frac{3}{2}+|2x-1|\)
Vì \(|2x-1|\ge0\)\(\forall x\)
\(\Rightarrow\frac{3}{2}+|2x-1|\ge\frac{3}{2}\)\(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Max_B=\frac{3}{2}\Leftrightarrow x=\frac{1}{2}\)
Tính GTLL của đơn thức xy biết x+y=2
Ta có BĐT \(x^2+y^2\ge2xy\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)
Đẳng thức xảy ra khi \(x-y=0\Leftrightarrow x=y\)
Suy ra \(x+y\ge2\sqrt{xy}\Leftrightarrow2\ge2\sqrt{xy}\Leftrightarrow1\ge xy\)
Đẳng thức xảy ra khi \(x=y=1\)
Vậy GTLN của đơn thức \(xy=1\) khi \(x=y=1\)