Tìm x,y,z thỏa mãn:
4x2+2y2+2z2-4xy-2yz+2y-8z+10<=0
Cho 4x2 + 2y2 + 2z2 - 4xy - 4xz + 2yz - 10z -6y +34 = 0
Tính giá trị biểu thức M = (x-15)2023 + (y-8)2024 + (z-24)2025
Bạn xem lại phương trình ban đầu có đúng không vậy?
cho các số dương x,y,z thỏa mãn x+y+z=1 tìm min của biểu thức
P=√(2x2+xy+2y2) +√(2y2+yz+2z2)+ √(2z2+xz+2x2)
Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)
Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Chứng minh tương tự:
\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)
Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)
Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Bạn tham khảo nhé
https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737
tìm x,y,z biết : 4x^2 + 2y^2 + 2z^2 - 4xy - 2yz -2y - 8z +10 = 0
4x^2+2y^2+2z^2-4xy-2yz+2y-8z+10 bé hơn hoặc bằng 0. Tìm x,y,z
4x^2+2y^2+2z^2-4xy-2yz+2y-8z+10 bé hơn hoặc bằng 0. Tìm x,y,z
tìm x, y , z biết \(4x^2+2y^2+2z^2-4xy-2yz+2y-8z+10\le0\)
\(\left(4x^2-4xy+y^2\right)+\left(y^2-2yz+z^2\right)+2\left(y-z\right)+1+\left(z^2-6z+9\right)\le0\)
\(\left(2x-y\right)^2+\left(y-z+1\right)^2+\left(z-3\right)^2\le0\)
\(\Leftrightarrow x=1;y=2;z=3\)