Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Huyền Thương
Xem chi tiết
hung
Xem chi tiết
Mai Thanh Hải
9 tháng 7 2017 lúc 6:55

Ta có : 

\(x^2+3y^2+2xy-10x-14y+18=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-10x-10y+25+\left(2y^2-4y+2\right)-9=0\)

\(\Leftrightarrow\left(x+y\right)^2-2.\left(x+y\right).5+25+2\left(y^2-2y+1\right)=9\)

\(\Leftrightarrow\left(x+y-5\right)^2+2\left(y-1\right)^2=9\)

Vì \(2\left(y-1\right)^2\ge0\forall y\)nên  \(\left(x+y-5\right)^2\le9\)hay \(\left(M-5\right)^2\le9\)

\(\Rightarrow-3\le M-5\le3\Leftrightarrow2\le M\le8\)

\(Min_M=2\)khi \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)\(Max_M=8\)khi\(\hept{\begin{cases}x=7\\y=1\end{cases}}\)
hoanghongnhung
Xem chi tiết
Uyên Phương
Xem chi tiết
_Guiltykamikk_
14 tháng 4 2018 lúc 12:11

Đặt  \(A=-x^2-3y^2-2xy+10x+14y-18\)

Ta có : \(-A=x^2+3y^2+2xy-10x-14y+18\)

\(-A=\left(x^2+2xy+y^2\right)+2y^2-10x-14y+18\)

\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)\times5+25\right]+2y^2-4y+7\)

\(-A=\left(x+y-5\right)^2+2\left(y^2-2y+1\right)+5\)

\(-A=\left(x+y-5\right)^2+2\left(y-1\right)^2+5\)

Mà \(\left(x+y-5\right)^2\ge0\forall x;y\in R\)

\(\left(y-1\right)^2\ge0\forall y\in R\Rightarrow2\left(y-1\right)^2\ge0\forall y\in R\)

\(\Rightarrow-A\ge5\)

\(\Leftrightarrow A\le-5\)

Dấu " = " xảy ra khi:

\(\hept{\begin{cases}x+y-5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)

Vậy Max A = - 5 khi ( x ; y ) = ( 4 ; 1 )

Uzumaki Naruto
Xem chi tiết

-2A=2x2+6y2+4xy-20x-28y+36

=(x2+4xy+4y2)+(x2-20x+100)+2(y2-14y+49)-162

=(x+2y)2+(x-10)2+2(y-7)2-162\(\ge\)-162

=> A\(\le81\)

Dấu "=" xảy ra khi

ntt2005
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 5 2019 lúc 19:18

\(A=-\left(x^2+y^2+25+2xy-10x-10y\right)-2y^2+4y-2+9\)

\(A=-\left(x+y-5\right)^2-2\left(y-1\right)^2+9\le9\)

\(\Rightarrow A_{max}=9\) khi \(\left\{{}\begin{matrix}y=1\\x=4\end{matrix}\right.\)

\(A_{min}\) không tồn tại

Thám tử Holmes
Xem chi tiết
Thám tử Holmes
17 tháng 1 2019 lúc 22:05
Mysterious Person
17 tháng 1 2019 lúc 22:19

https://hoc24.vn/hoi-dap/question/655965.html

ngoc tram
Xem chi tiết
hya_seije_jaumeniz
28 tháng 7 2018 lúc 19:45

\(E=1983-x^2-3y^2+2xy-10x+14y\)

\(-E=x^2+3y^2-2xy+10x-14y-1983\)

\(-E=\left(x^2-2xy+y^2\right)+2y^2+10x-14y-1983\)

\(-E=\left[\left(x-y\right)^2+2\left(x-y\right).5+25\right]\)\(+2\left(y^2-2y+1\right)+1956\)

\(-E=\left(x-y+5\right)^2+2\left(y-1\right)^2+1956\)

Do  \(\left(x-y+5\right)^2\ge0\forall x;y\)

             \(2\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow-E\ge1956\Leftrightarrow E\le-1956\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}x-y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=1\end{cases}}\)

Vậy ...

Đàm Tùng Vận
Xem chi tiết
Đàm Tùng Vận
7 tháng 12 2021 lúc 23:13

Giups mk vs ạ ai nhanh mk tick nha

Akai Haruma
8 tháng 12 2021 lúc 0:55

Lời giải:
\(x^2+3y^2+10x-14y-2xy=11\)

$\Leftrightarrow (x^2-2xy+y^2)+2y^2+10x-14y=11$

$\Leftrightarrow (x-y)^2+10(x-y)+25+(2y^2-4y+2)=38$

$\Leftrightarrow (x-y+5)^2+2(y-1)^2=38$

$\Rightarrow (x-y+5)^2=38-2(y-1)^2\leq 38$

$\Rightarrow -\sqrt{38}\leq x-y+5\leq \sqrt{38}$

$\Leftrightarrow -\sqrt{38}-5\leq x-y\leq \sqrt{38}-5$
Vậy $A_{\min}=-\sqrt{38}-5$ và $A_{\max}=\sqrt{38}-5$