Tìm x,y,z thỏa mãn: \(\sqrt{x-\sqrt{5}}\)+ \(\sqrt{y+\sqrt{3}}\)+(x+y+z)=0
Tìm x , y , z thỏa mãn :
\(\sqrt{\left(x-3\sqrt{5}\right)^2}+\sqrt{\left(y+3\sqrt{5}\right)^2}\) + I x + y + z I = 0
\(\sqrt{\left(x-3\sqrt{5}\right)^2}+\sqrt{\left(y+3\sqrt{5}\right)^2}+\left|x+y+z\right|=0\)
\(\Leftrightarrow\left|x-3\sqrt{5}\right|+\left|y+3\sqrt{5}\right|+\left|x+y+z\right|=0\)
\(\Leftrightarrow\begin{cases}x-3\sqrt{5}=0\\y+3\sqrt{5}=0\\x+y+z=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=3\sqrt{5}\\y=-3\sqrt{5}\\z=-x-y=-3\sqrt{5}+3\sqrt{5}=0\end{cases}\)
a,GPT \(\sqrt{x^3+12}-3x=\sqrt{x^2+5}-5\)
b,Cho x,y,z>0 thỏa mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=3\)TÌM GTNN \(P=\frac{\sqrt{x}+1}{y+1}+\frac{\sqrt{y}+1}{z+1}+\frac{\sqrt{z}+1}{x+1}\)
b, Ta có
\(\frac{\sqrt{x}+1}{y+1}=\frac{\left(\sqrt{x}+1\right)\left(y+1\right)-y-y\sqrt{x}}{y+1}=\sqrt{x}+1-\frac{y\left(\sqrt{x}+1\right)}{y+1}\)
Mà \(y+1\ge2\sqrt{y}\)
=> \(\frac{\sqrt{x}+1}{y+1}\ge\sqrt{x}+1-\frac{1}{2}\sqrt{y}\left(\sqrt{x}+1\right)\)
Khi đó
\(P\ge\frac{1}{2}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3-\frac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)
Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{3}=3\)
=> \(P\ge\frac{1}{2}.3+3-\frac{3}{2}=3\)
Vậy MinP=3 khi x=y=z=1
Cho x,y,z >0 thỏa mãn \(x+y+z=3\)
Tìm min \(Q=\sqrt[3]{\frac{x^5+y^5}{x^2+y^2}}+\sqrt[3]{\frac{y^5+z^5}{y^2+z^2}}+\sqrt[3]{\frac{z^5+x^5}{z^2+x^2}}\)
với x,y,z là 3 số thực dương thỏa mãn x+y+z=3.Tìm GTNN của
P=\(\dfrac{x}{\sqrt{y}+\sqrt{z}}+\dfrac{y}{\sqrt{x}+\sqrt{z}}+\dfrac{z}{\sqrt{x}+\sqrt{y}}+\dfrac{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{32}\)
Cho các số x,y,z >0 thỏa mãn x+y+z = 12. Tìm GTLN của biểu thức: \(A=\sqrt{4x+2\sqrt{x}+1}+\sqrt{4y+2\sqrt{y}+1}+\sqrt{4z+2\sqrt{z}+1}\)
\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)
\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)
Tương tự và cộng lại:
\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)
\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)
\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)
\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)
\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)
\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)
\(=\sqrt{189}\)
Dấu "=" xảy ra <=> x = y = z = 4
Cho x;y;z>0 thỏa mãn x+y+z=4 tìm Min:
\(\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\)
Vì nếu điều kiện là xyz>0 thì không tồn tại min(xyz) mà min(xyz) sẽ tiến tới 0 (mà không bằng 0 )
Bạn có thể chứng minh được điều này:
Nếu x,y,z > 0 thì bài toán quá đơn giản và có nhiều cách như
Cách 1: Áp dụng bất đẳng thức Côsi cho 3 số dương
(x+y+z)^3 >= 27xyz
=> (xyz)^2 >= 37
Do vậy min (xyz) = 3√3 (căn bậc 3 của 3 nhá :D)
Dấu = xảy ra <=> x=y=z= √3 (căn bậc 3 của 3 nhá :D)
Tìm x, y, z nguyên thỏa mãn x+y+z+4=\(2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
Bạn trừ đi rồi gộp thành hằng đẳng thức là được nhé
Cho x,y,z>0 thỏa mãn xyz=1. Tìm min \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
bạn vào trang này nhé có bài như thến này đấy
//123doc.org//document/3173507-ren-luyen-chuyen-de-tim-maxmin-on-thi-thpt-quoc-gia.htm
tính diện tích hình vẽ dưới đây
Với x,y,z là 3 số thực dương thỏa mãn x+y+z=3,tìm giá trị nhỏ nhất của biểu thức
P=\(\dfrac{x}{\sqrt{y}+\sqrt{z}}+\dfrac{y}{\sqrt{z}+\sqrt{x}}+\dfrac{z}{\sqrt{x}+\sqrt{y}}+\dfrac{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{32}\)