phân tích đa thức thành nhân tử:3x^4+11x^3-7x^2-2x +1
phân tích đa thức thành nhân tử
\(3x^4+11x^3-7x^2-2x+1\)
Phân tích đa thức thành nhân tử:
a, \(4x^4+4x^3+5x^2+2x+1\)
b, \(3x^2+11x^3-7x^2-2x+1\)
a) \(4x^4+4x^3+5x^2+2x+1\)
= \(x^2\left(4x^2+4x+5+\frac{4}{x}+\frac{1}{x^2}\right)\)
=\(x^2\left[\left(4x^2+\frac{1}{x^2}\right)+2\left(2x+\frac{1}{x}\right)+5\right]\)(1)
Đặt \(2x+\frac{1}{x}=a\)thì \(\left(2x+\frac{1}{x}\right)^2=a^2\)\(\Rightarrow4x^2+\frac{1}{x^2}=a^2-4\)
Thay vào (1), ta có:
\(x^2\left(a^2-4+2a+5\right)\)
=\(x^2\left(a^2+2a+1\right)\)
=\(x^2\left(a+1\right)^2\)
=\(\left[x\left(a+1\right)\right]^2\)
=\(\left[x\left(2x+\frac{1}{x}+1\right)\right]^2\)
=\(\left(2x^2+1+x\right)^2\)
\(=\left(2x^2+x+1\right)^2\)
a) Đặt f(x) = 4x4 + 4x3 + 5x2 + 2x + 1
Sau khi phân tích thì đa thức có dạng ( 2x2 + ax + 1 )( 2x2 + bx + 1 )
=> f(x) = ( 2x2 + ax + 1 )( 2x2 + bx + 1 )
<=> f(x) = 4x4 + 2bx3 + 2x2 + 2ax3 + abx2 + ax + 2x2 + bx + 1
<=> f(x) = 4x4 + ( a + b )2x3 + ( ab + 4 )x2 + ( a + b )x + 1
Đồng nhất hệ số ta có : \(\hept{\begin{cases}a+b=2\\ab=1\end{cases}\Leftrightarrow}a=b=1\)
Vậy f(x) = 4x4 + 4x3 + 5x2 + 2x + 1 = ( 2x2 + x + 1 )2
b) 3x4 + 11x3 - 7x2 - 2x + 1
= 3x4 - x3 + 12x3 - 4x2 - 3x2 + x - 3x + 1
= x3( 3x - 1 ) + 4x2( 3x - 1 ) - x( 3x - 1 ) - ( 3x - 1 )
= ( 3x - 1 )( x3 + 4x2 - x - 1 )
Còn phần b) thì bạn phân tích giống như Quỳnh thôi.
bài 1 Phân tích đa thức thành nhân tử ( bằng kĩ thuật bổ sung hằng đẳng thức )
1, 2x2 - 3x - 2
2,4x2 - 7x - 2
3, 6x2 + 7x - 3
bài 2 phân tích thành nhân tử ( bằng kĩ thuật tách hạng tử )
1, 3x2 + 7x - 6
2, 8x2 - 2x - 3
3, -8x2 + 5x + 3
4, -10x2 + 11x + 6
\(1,2x^2-3x-2\)
\(=2x^2-4x+x-2\)
\(=2x\left(x-2\right)+\left(x-2\right)\)
\(=\left(2x+1\right)\left(x-2\right)\)
\(2,4x^2-7x-2\)
\(=4x^2-8x+x-2\)
\(=4x\left(x-2\right)+x-2\)
\(\left(4x+1\right)\left(x-2\right)\)
1. Phân tích đa thức thành nhân tử
B=(x-y)^3 + (y-z)^3 + (z-x)^3 ( phương pháp xét giá trị riêng)
2. Cho đa thức hãy phân tích Y thành tidch của 1 đa thức bậc nhất với 1 đa thức bậc 3 có hệ số nguyên sao cho hệ số cao nhất của đa thức bậc 3 là 1
Y= 3x^4 + 11x^3 - 7x^2 - 2x + 1 (pp dùng hệ số bất định)
phân tích đa thức thành nhân tử: 2x^4 + 3x^3 - 12x^2 - 7x + 6
\(=2x^4+6x^3-3x^3-9x^2-3x^2-9x+2x+6\)
\(=2x^3\left(x+3\right)-3x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(2x^3-4x^2+x^2-2x-x+2\right)=\left(x+3\right)\left(x-2\right)\left(2x^2+x-1\right)\)
\(=\left(x+3\right)\left(x-2\right)\left(2x^2+2x-x-1\right)=\left(x+3\right)\left(x-2\right)\left(x+1\right)\left(2x-1\right)\)
2x^4+3x^3-12x^2-7x+6 = (2x^4-x^3)+(4x^3-2x^2)-(10x^2-5x)-(12x-6)
= x^3.(2x-1)+2x^2.(2x-1)-5x.(2x-1)-6.(2x-1) = (2x-1).(x^3+2x^2-5x-6)
= (2x-1).[ (x^3+x^2)+(x^2+x)-(6x+6) ] = (2x-1).(x+1).(x^2+x-6) = (2x-1).(x-1).[(x^2-2x)+(3x-6)]
= (2x-1).(x+1).(x-2).(x+3)
k mk nha
\(2x^4+3x^3-12x^2-7x+6\)
\(=\left(2x^4+2x^3\right)+\left(x^3+x^2\right)-\left(13x^2+13x\right)+\left(6x+6\right)\)
\(=\left(x+1\right)\left(2x^3+x^2-13x+6\right)\)
Phân tích đa thức thành nhân tử dạng đoán nghiệm
a,-3x^4+20x^3-35x^2-10x+48
b,-2x^4-7x^3-x^2+7x+3
x^5-5x^4-2x^3+17x^2-13x+2
a: Ta có: \(-3x^4+20x^3-35x^2-10x+48\)
\(=-\left(3x^4-20x^3+35x^2+10x-48\right)\)
\(=-\left(3x^4-9x^3-11x^3+33x^2+2x^2-6x+16x-48\right)\)
\(=-\left(x-3\right)\left(3x^3-11x^2+2x+16\right)\)
\(=-\left(x-3\right)\left(3x^3-6x^2-5x^2+10x-8x+16\right)\)
\(=-\left(x-3\right)\left(x-2\right)\left(3x^2-5x-8\right)\)
\(=-\left(x-3\right)\left(x-2\right)\left(3x-8\right)\left(x+1\right)\)
b: Ta có: \(-\left(2x^4+7x^3+x^2-7x-3\right)\)
\(=-\left(2x^4-2x^3+9x^3-9x^2+10x^2-10x+3x-3\right)\)
\(=-\left(x-1\right)\left(2x^3+9x^2+10x+3\right)\)
\(=-\left(x-1\right)\left(2x^3+2x^2+7x^2+7x+3x+3\right)\)
\(=-\left(x-1\right)\left(x+1\right)\left(2x^2+7x+3\right)\)
\(=-\left(x-1\right)\left(x+1\right)\cdot\left(x+3\right)\left(2x+1\right)\)
Phân tích đa thức thành nhân tử:
d,2x^3+3x^2-11x-6
2x3 + 3x2 - 11x - 6
Thử với x = 2 ta có :
2.23 + 3.22 - 11.2 - 6 = 0
Vậy x = 2 là nghiệm của đa thức. Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho x - 2
Thực hiện phép chia 2x3 + 3x2 - 11x - 6 cho x - 2 ta được 2x2 + 7x + 3
=> 2x3 + 3x2 - 11x - 6 = ( x - 2 )( 2x2 + 7x + 3 )
Lại có : 2x2 + 7x + 3 = 2x2 + 6x + x + 3 = 2x( x + 3 ) + ( x + 3 ) = ( x + 3 )( 2x + 1 )
=> 2x3 + 3x2 - 11x - 6 = ( x - 2 )( x + 3 )( 2x + 1 )
Lại Bezout, thế này thì ...
2x3 + 3x2 - 11x - 6
= ( 2x3 + 2x2 - 12x ) + ( x2 + x - 6 )
= 2x ( x2 + x - 6 ) + ( x2 + x - 6 )
= ( 2x + 1 ) ( x2 + x - 6 )
= ( 2x + 1 ) [ ( x2 + 3x ) - ( 2x + 6 ) ]
= ( 2x + 1 ) [ x ( x + 3 ) - 2 ( x + 3 ) ]
= ( 2x + 1 ) ( x - 2 ) ( x + 3 )
phân tích đa thức thành nhân tử
a,2x^2-5x+3
b,3x^2++7x+4
Phân tích đa thức thành nhân tử
1)-3x^4+20x^3-35x^2-10x+48
2)-2x^4-7x^3-x^2+7x+3
1) =\(-3x^4+9x^3+11x^3-33x^2-2x^2+6x-16x+48\)
=\(-3x^3\left(x-3\right)+11x^2\left(x-3\right)-2x\left(x-3\right)-16\left(x-3\right)\)
= \(\left(x-3\right)\left(-3x^3+11x^2-2x-16\right)\)
= \(\left(x-3\right)\left(-3x^3+6x^2+5x^2-10x+8x-16\right)\)
=\(\left(x-3\right)\left(-3x^2\left(x-2\right)+5x\left(x-2\right)+8\left(x-2\right)\right)\)
= \(\left(x-3\right)\left(x-2\right)\left(-3x^2+5x+8\right)\)
= \(\left(x-3\right)\left(x-2\right)\left(x-\frac{8}{3}\right)\left(x+1\right)\)
Ý b lm theo ý tưởng tương tự nha bn :D