cho x,y là các số thực không âm. Tìm GTNN của biểu thức
\(P=2x+y-2\sqrt{xy}-2\sqrt{y}+2016\)
Với x, y, z là các số thực không âm thỏa mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=6\)
Tìm GTLN của biểu thức: \(P=\sqrt{xy}+2\sqrt{yz}+3\sqrt{zx}\)
\(P=\sqrt{y}\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}=\left(6-\sqrt{x}-\sqrt{z}\right)\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}\)
\(P=-x+6\sqrt{x}-2z+12z=-\left(\sqrt{x}-3\right)^2-2\left(\sqrt{z}-3\right)^2+27\le27\)
\(P_{max}=27\) khi \(\left(x;y;z\right)=\left(9;0;9\right)\)
cho các số thực dương x,y thỏa mãn điều kiện x+y=2016.Tìm giá trị nhỏ nhất của biểu thức:
P=\(\sqrt{5x^2+xy+3y^2}+\sqrt{3x^2+xy+5y^2}+\sqrt{x^2+xy+2y^2}+\sqrt{2x^2+xy+y^2}\)
\(P=\sqrt{\frac{1}{36}\left(11a+7b\right)^2+\frac{59\left(a-b\right)^2}{36}}+\sqrt{\frac{1}{36}\left(7a+11b\right)+\frac{59\left(a-b\right)^2}{36}}\)
\(=\sqrt{\frac{1}{16}\left(3a+5b\right)^2+\frac{5\left(a-b\right)^2}{16}}+\sqrt{\frac{1}{16}\left(5a+3b\right)^2+\frac{5\left(a-b\right)^2}{16}}\)
\(\ge\frac{1}{6}\left(11a+7b\right)+\frac{1}{6}\left(7a+11b\right)+\frac{1}{4}\left(3a+5b\right)+\frac{1}{4}\left(5a+3b\right)\)
\(=5\left(a+b\right)=5.2016=10080\)
alibaba nguyễn Em kiểm tra lại bài làm của mình nhé!
Nguyễn Linh Chi haha, em nhìn ra rối, chỗ dấu "=" thứ 2 phải sửa lại thành dấu "+" ,còn anh ấy phân tích có sai chỗ nào thì em ko biết:D (hình như là đúng)
Cho các số x,y thỏa mãn\(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\).Tìm GTNN của biểu thức A=\(x^2-xy+y^2+2x+2022\)
Cho x, y là các số thực không âm và thỏa mãn điều kiện \(x^3+y^3+xy=x^2+y^2\). Tìm GTNN và GTLN của
\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\)
Theo đề bài, ta có:
\(x^3+y^3=x^2-xy+y^2\)
hay \(\left(x^2-xy+y^2\right)\left(x+y-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-xy+y^2=0\\x+y=1\end{cases}}\)
+ Với \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\)
+ với \(x+y=1\Rightarrow0\le x,y\le1\Rightarrow P\le\frac{1+\sqrt{1}}{2+\sqrt{0}}+\frac{2+\sqrt{1}}{1+\sqrt{0}}=4\)
Dấu đẳng thức xảy ra <=> x=1;y=0 và \(P\ge\frac{1+\sqrt{0}}{2+\sqrt{1}}+\frac{2+\sqrt{0}}{1+\sqrt{1}}=\frac{4}{3}\)
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3
Cho x,y,z là các số thực không âm thỏa mãn x + y + z = 1. Tìm giá trị lớn nhất của biểu thức.
\(P=\sqrt{2x^2+x+1}+\sqrt{2y^2+y+1}+\sqrt{2z^2+z+1}\)
Em không chắc đâu nha!
Từ đề bài suy ra \(0\le x;y;z\le1\Rightarrow x\left(1-x\right)\ge0\Rightarrow x\ge x^2\)
Tương tự với y với z.Ta có:
\(P=\sqrt{x^2+x^2+x+1}+\sqrt{y^2+y^2+y+1}+\sqrt{z^2+z^2+z+1}\)
\(\le\sqrt{x^2+2x+1}+\sqrt{y^2+2y+1}+\sqrt{z^2+2z+1}\)
\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}\)
\(=\left|x+1\right|+\left|y+1\right|+\left|z+1\right|\)
\(=\left(x+y+z\right)+3=1+3=4\)
Dấu "=" xảy ra khi (x;y;z) = (0;0;1) và các hoán vị của nó.
Vậy....
Em sai chỗ nào xin các anh/ chị chỉ rõ ra giúp ạ, chứ tk sai mà không góp ý thế em cũng không biết đường nào mà tránh cái lỗi sai tương tự đâu ạ! Em cảm ơn.
Cho các số thực x,y không âm. Khi đó giá trị nhỏ nhất của biểu thức sau là:
\(M=2x^2+5y-4x\sqrt{y}-4x-8\sqrt{y}+2036\)
Lời giải:
Đặt $\sqrt{y}=b(b\geq 0)\Rightarrow y=b^2$
$M=2x^2+5b^2-4xb-4x-8b+2036$
$=2(x^2+b^2-2xb)+3b^2-4x-8b+2036$
$=2(x-b)^2-4(x-b)+3b^2-12b+2036$
$=2(x-b)^2-4(x-b)+2+3(b^2-4b+4)+2022$
$=2[(x-b)^2-2(x-b)+1]+3(b-2)^2+2022$
$=2(x-b-1)^2+3(b-2)^2+2022\geq 2022$
Vậy $M_{\min}=2022$
cho x,y,z là các số thực không âm thỏa mãn x+y+z=1.Tìm min
\(T=\left[\frac{\sqrt[3]{x+y+2z}\left(\sqrt{xy+z}+\sqrt{2x^2+2y^2}\right)}{3\sqrt[6]{xy}}\right]\left(x^2+y^2+z^2\right)-2\sqrt{2x^2-2x+1}\)
Cho x,y,z là các số thực không âm thỏa mãn x+y+z=1.Tìm GTLN của biểu thức:
P=\(2x+\left(y-z\right)^2+4\sqrt{yz}\)
Cho x, y, z là các số thực không âm thỏa mãn x+y+z =1
tìm GTLN của biểu thức:
P = \(\sqrt{2x^2+x+1}+\sqrt{2y^2+y+1}+\sqrt{2z^2+z+1}\)
\(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=1\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le1\)
\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x^2+x+1\le x^2+2x+1\\2y^2+y+1\le y^2+2y+1\\2z^2+z+1\le z^2+2z+1\end{matrix}\right.\)
\(\Rightarrow P\le\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}=x+y+z+3=4\)
\(P_{max}=4\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và các hoán vị