Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Phúc
Xem chi tiết
Phạm Tuấn Bách
30 tháng 1 2016 lúc 21:30

mình ko biết

Minh Triều
30 tháng 1 2016 lúc 21:30

cách của TĐT là cách nào ko thấy sao bik

Hoàng Phúc
30 tháng 1 2016 lúc 21:33

cách của TĐT: http://olm.vn/hoi-dap/question/390836.html

Trần Thị Xuân Hòa
Xem chi tiết
Đinh Quốc Tuấn
18 tháng 11 2018 lúc 20:32

lấy mẫu trừ đi (ax+by+cz)^2

Trần Phúc Khang
Xem chi tiết
mai dinh son
Xem chi tiết
Vũ Nguyễn
Xem chi tiết
Big City Boy
Xem chi tiết
Trần Minh Hoàng
27 tháng 12 2020 lúc 18:43

Ta có \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\Leftrightarrow ayz+bzx+cxy=0\).

Do đó: \(ax^2+by^2+cz^2=\left(ax+by+cz\right)\left(x+y+z\right)-axy-axz-byz-byx-czx-czy=0-xy\left(a+b\right)-yz\left(b+c\right)-zx\left(c+a\right)=0+xyc+yza+zxb=0\).

lộc Nguyễn
Xem chi tiết
lộc Nguyễn
Xem chi tiết
Rồng Con
Xem chi tiết
Akai Haruma
29 tháng 7 2019 lúc 0:24

Lời giải:

Từ \(ax+by+cz=0\Rightarrow (ax+by+cz)^2=0\)

\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2=-2(axby+axcz+bycz)\)

\(=-2(bcyz+cazx+abxy)\)

Khi đó:

\(bc(y-z)^2+ca(z-x)^2+ab(x-y)^2=bc(y^2-2yz+z^2)+ca(z^2-2zx+x^2)+ab(x^2-2xy+y^2)\)

\(=(bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2)-(2bcyz+2cazx+2abxy)\)

\(=(bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2)+(a^2x^2+b^2y^2+c^2z^2)\)

\(=ax^2(a+b+c)+by^2(a+b+c)+cz^2(a+b+c)=(a+b+c)(ax^2+by^2+cz^2)\)

Do đó:

\(\frac{ax^2+by^2+cz^2}{bc(y-z)^2+ca(z-x)^2+ab(x-y)^2}=\frac{ax^2+by^2+cz^2}{(ax^2+by^2+c^2)(a+b+c)}=\frac{1}{a+b+c}=\frac{1}{\frac{1}{2019}}=2019\)

Ta có đpcm.