Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trọng Chiến
Xem chi tiết
thành piccolo
Xem chi tiết
Thắng Nguyễn
24 tháng 5 2016 lúc 21:51

đề sai đúng ko nhỉ

Phan bá hưng
24 tháng 5 2016 lúc 21:58

cậu viết sai đè rồi,b+2 cơ

Tiểu Nghé
24 tháng 5 2016 lúc 22:30

ko fai sai ở tử hay sao yk

Nguyễn Hoàng
Xem chi tiết
Tớ Đông Đặc ATSM
13 tháng 1 2019 lúc 22:27

Ta có : \(a^2+b^2+c^2\ge ab+ac+\)\(bc\)(1)

vì , ta có 

(1) \(\Leftrightarrow\)\(2\left(a^2+b^2+c^2\right)\)\(\ge2\left(ab+ac+bc\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)\)\(+\left(a^2-2ac+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)(luôn đúng) => bất đẳng thức

Ta có :

\(a^2+b^2+c^2-2abc\ge ab+bc+ac-2abc\)

<=>\(a^2+b^2+c^2+2abc-3abc\ge ab+bc+ac-2abc\)

<=> \(1-3abc\ge ab+bc+ac-2abc\)

=> MAX P=1 <=> \(\hept{\begin{cases}a=0\\b=c=1\end{cases}}\)hoặc \(\hept{\begin{cases}b=0\\a=c=1\end{cases}}\)

hoặc \(\hept{\begin{cases}c=0\\a=b=1\end{cases}}\)

Sai thì bảo mình nhé

Tớ Đông Đặc ATSM
13 tháng 1 2019 lúc 22:32

xin lỗi Dòng thứ 8 và 9 phải là 

\(a^2+b^2+c^2+2abc-4abc\ge ab+ac+bc-2abc\)

\(\Leftrightarrow1-4abc\ge ab+ac+bc-2abc\)

Trần Tuấn Phong
21 tháng 5 2020 lúc 21:08

9999999999999999x99999999999999 =?

Khách vãng lai đã xóa
Lê Nam Hải
Xem chi tiết
nub
8 tháng 7 2020 lúc 16:22

\(b^4+c^4-bc\left(b^2+c^2\right)=\left(b^2+bc+c^2\right)\left(b-c\right)^2\)

\(\Rightarrow b^4+c^4\ge bc\left(b^2+c^2\right)\)

Tương tự\(\Rightarrow\Sigma_{cyc}\frac{a}{a+b^4+c^4}\le\Sigma_{cyc}\frac{a}{a+bc\left(b^2+c^2\right)}=\Sigma_{cyc}\frac{a}{bc\left(a^2+b^2+c^2\right)}=\frac{1}{a^2+b^2+c^2}\Sigma_{cyc}\frac{a}{bc}\)

\(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}=\frac{a^2+b^2+c^2}{abc}=a^2+b^2+c^2\)

\(\Rightarrow\frac{1}{a^2+b^2+c^2}\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)=1\)

oke rồi he

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
8 tháng 7 2020 lúc 21:48

@Nub :v

Áp dụng Bunhiacopski ta dễ có:

\(\frac{a}{b^4+c^4+a}=\frac{a\left(1+1+a^3\right)}{\left(b^4+c^4+a\right)\left(1+1+a^3\right)}\le\frac{a^4+2a}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự:

\(\frac{b}{a^4+c^4+b}\le\frac{b^4+2b}{\left(a^2+b^2+c^2\right)^2};\frac{c}{a^4+b^4+c}\le\frac{c^4+2c}{\left(a^2+b^2+c^2\right)^2}\)

Cộng lại:

\(A\le\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\)

Ta đi chứng minh:

\(\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\le1\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

Cái này luôn  đúng theo Cauchy

Đẳng thức xảy ra tại a=b=c=1

Khách vãng lai đã xóa
Nguyễn Đặng Bảo Trâm
Xem chi tiết
Lê Nam Hải
Xem chi tiết
zZz Cool Kid_new zZz
8 tháng 7 2020 lúc 22:02

Áp dụng AM - GM 

\(P=\frac{1}{\sqrt{a^2+b^2}}+\frac{1}{\sqrt{b^2+c^2}}+\frac{1}{\sqrt{c^2+a^2}}\ge\frac{1}{\sqrt{2ab}}+\frac{1}{\sqrt{2bc}}+\frac{1}{\sqrt{2ca}}\)

\(abc=a+b+c+2\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)+\left(b+1\right)\left(c+1\right)+\left(c+1\right)\left(a+1\right)\ge\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)

Với mọi số thực x,y,z ta có ngay:

\(\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)

\(\Leftrightarrow\frac{1}{1+\frac{y+z}{x}}+\frac{1}{1+\frac{z+x}{y}}+\frac{1}{1+\frac{x+y}{z}}=1\)

Khi đó ta có thể đặt được \(\left(a;b;c\right)\rightarrow\left(\frac{y+z}{x};\frac{z+x}{y};\frac{x+y}{z}\right)\) 

Thay vào thì dễ có:

\(\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(z+y\right)\left(x+y\right)}}\)

\(\le\frac{1}{2}\Sigma\left(\frac{x}{x+z}+\frac{z}{x+z}\right)=\frac{3}{2}\)

Vậy ...........................

Khách vãng lai đã xóa
Nguyễn Thiều Công Thành
Xem chi tiết
Thắng Nguyễn
14 tháng 7 2017 lúc 22:09

Áp dụng BĐT Cauchy-Schwarz ta có:

\(P=\frac{1}{\left(a+2\right)+\left(a+2\right)+\left(b+2\right)}+\frac{1}{\left(b+2\right)+\left(b+2\right)+\left(c+2\right)}+\frac{1}{\left(c+2\right)+\left(c+2\right)+\left(a+2\right)}\)

\(\le\frac{1}{9}\left(\frac{2}{a+2}+\frac{1}{b+2}\right)+\frac{1}{9}\left(\frac{2}{b+2}+\frac{1}{c+2}\right)+\frac{1}{9}\left(\frac{2}{c+2}+\frac{1}{a+2}\right)\)

\(=\frac{1}{3}\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)\)

Dễ dàng cm BĐT \(\frac{1}{x+1}+\frac{1}{y+1}\ge\frac{2}{1+\sqrt{xy}}\)

\(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=\frac{1}{2}\left(\frac{1}{1+\frac{a}{2}}+\frac{1}{1+\frac{b}{2}}+\frac{1}{1+\frac{c}{2}}\right)\)

\(\le\frac{1}{2}.\frac{3}{1+\sqrt[3]{\frac{abc}{8}}}=\frac{3}{4}\Rightarrow P\le\frac{1}{4}\)

Xảy ra khi \(a=b=c=2\)

Thắng Nguyễn
15 tháng 7 2017 lúc 21:48

À viết ngược dấu BĐT phụ r` :v

\(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\) mới đúng nhé :v

\(\Leftrightarrow\frac{\left(\sqrt{xy}-1\right)\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(x+1\right)\left(y+1\right)\left(1+\sqrt{xy}\right)}\le0\) 

Hoàng Phúc
16 tháng 7 2017 lúc 21:56

xy >/ 1 ? 

chàng trai 16
Xem chi tiết
Đức Lộc
Xem chi tiết
zZz Cool Kid_new zZz
9 tháng 1 2020 lúc 1:15

\(ab+bc+ca=abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

\(\frac{a}{bc\left(a+1\right)}=\frac{\frac{1}{x}}{\frac{1}{y}\cdot\frac{1}{z}\left(\frac{1}{x}+1\right)}=\frac{xyz}{x\left(x+1\right)}=\frac{yz}{x+1}\)

Tươn tự rồi cộng vế theo vế:

\(A=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\le\frac{\left(x+y\right)^2}{4\left(z+1\right)}+\frac{\left(y+z\right)^2}{4\left(x+1\right)}+\frac{\left(z+x\right)^2}{4\left(y+1\right)}\)

Đặt \(x+y=p;y+z=q;z+x=r\Rightarrow p+q+r=2\)

\(A\le\Sigma\frac{\left(x+y\right)^2}{4\left(z+1\right)}=\Sigma\frac{\left(x+y\right)^2}{4\left[\left(z+y\right)+\left(z+x\right)\right]}=\frac{p^2}{4\left(q+r\right)}+\frac{r^2}{4\left(p+q\right)}+\frac{q^2}{4\left(p+r\right)}\)

Sau khi đổi biến,cô si thì em ra thế này.Ai đó giúp em với :)

Khách vãng lai đã xóa