Giải PT: \(2x^2.\left(2x^2+3\right)=2-x^2\)
giải pt \(x^2+\left(3-x\right)\sqrt{2x-1}=x\left(3\sqrt{2x^2-5x+2}-\sqrt{x-2}\right)\)
Giải PT: \(2\left(x-1\right)^2=3\left(\sqrt{x^3+2x^2-2x+3}+2\right)\)
bạn tự làm đk nhé
pt <=> \(2\left(x^2-2x-2\right)=3\sqrt{\left(x+3\right)\left(x^2-x+1\right)}\\ \)
Đặt a=x^2-x+1
b=x+3
pt<=> \(2\left(a-b\right)=3\sqrt{ab}\)
\(2a-2b-3\sqrt{ab}=0\)
\(\left(2a-4\sqrt{ab}\right)+\left(\sqrt{ab}-2b\right)=0\)
\(2\sqrt{a}\left(\sqrt{a}-2\sqrt{b}\right)+\sqrt{b}\left(\sqrt{a}-2\sqrt{b}\right)=0\)
\(\left(a-2\sqrt{b}\right)\left(2\sqrt{a}+\sqrt{b}\right)=0\)
tới đây bạn tự giải nhé
\(x^2+\dfrac{1}{x^2}=x+\dfrac{1}{x}\)
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
e,\(\left(x^2+x+1\right)^2-2x^2-2x=5\)
Giải pt
\(a.x^2+\dfrac{1}{x^2}=x+\dfrac{1}{x}\) ( ĐKXĐ : \(x\ne0\) )
\(\Leftrightarrow x^2+\dfrac{1}{x^2}-x-\dfrac{1}{x}=0\Leftrightarrow\left(x^2-\dfrac{1}{x}\right)+\left(\dfrac{1}{x^2}-x\right)=0\)
\(\Leftrightarrow-x\left(\dfrac{1}{x^2}-x\right)+\left(\dfrac{1}{x^2}-x\right)=0\Leftrightarrow\left(\dfrac{1}{x^2}-x\right)\left(1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}1-x=0\\\dfrac{1}{x^2}-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\1-x^3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(1-x\right)\left(1+x+x^2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\Leftrightarrow x=1\) ( x2 + x + 1 loại nhé nếu phân tích ra thì ta được \(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\in R\) )
Vậy \(S=\left\{1\right\}\)
b, \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow x\left(x+3\right).\left(x+1\right)\left(x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x+1-1\right)\left(x^2+3x+1+1\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x+1\right)-1-24=0\Leftrightarrow\left(x^2+3x+1\right)-25=0\)
\(\Leftrightarrow\left(x^2+3x+1-5\right)\left(x^2+3x+1+5\right)=0\Leftrightarrow\left(x^2+3x-4\right)\left(x^2+3x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x-4=0\\x^2+3x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x+4\right)=0\\\left(x+\dfrac{3}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}\forall x\in R\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vậy \(S=\left\{-4;1\right\}\)
e, \(\left(x^2+x+1\right)-2x^2-2x=5\Leftrightarrow\left(x^2+x+1\right)-2x^2-2x-2-3=0\)
\(\Leftrightarrow\left(x^2+x+1\right)-2\left(x^2+x+1\right)-3=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x-1\right)-3=0< =>\left(x^2+x\right)^2-4=0\)
\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\) ( x^2 + x + 2 loại nhé y như mấy câu trên luôn khác 0 ! )
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy \(S=\left\{-2;1\right\}\)
giải pt:\(\left(x^2+3x+3\right)^3+\left(x^2-x-1\right)^3+\left(-2x^2-2x-1\right)^3=1\)
\(\left(x^2+3x+3\right)^3+\left(x^2-x-1\right)^3=1^3+\left(2x^2+2x+1\right)^3\)
dùng hđt \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
có nhân tử chung
giải pt
\(\left(x^2-3x+3\right)\left(x^2-2x+3\right)=2x^2\)
\(\left(x^2-3x+3\right)\left(x^2-2x+3\right)=2x^2\)
TH1 : \(x^2-3x+3=2x^2\Leftrightarrow-x^2-3x+3=0\)
\(\Delta=\left(-3\right)^2-4.\left(-1\right).3=9+15=21>0\)
Nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{3-\sqrt{21}}{2.\left(-1\right)}=\frac{3-\sqrt{21}}{-2}=\frac{-3-\sqrt{21}}{2}\)
\(x_2=\frac{3+\sqrt{21}}{2.\left(-1\right)}=\frac{3+\sqrt{21}}{-2}=\frac{-3+\sqrt{21}}{2}\)
TH2 : \(x^2-2x+3=2x^2\Leftrightarrow-x^2-2x+3=0\)
\(\Delta=\left(-2\right)^2-4.\left(-1\right).3=4+12=16>0\)
Nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{2-\sqrt{16}}{2.1}=\frac{2-4}{2}=-\frac{2}{2}=-1\)
\(x_2=\frac{2+\sqrt{16}}{2.1}=\frac{2+4}{2}=\frac{6}{2}=3\)
Thực hiện tiếp nha cj, cách này khá dài ...
Cách này nha.
\(\left(x^2-3x+3\right)\left(x^2-2x+3\right)=2x^2\)
\(x^4-5x^3+12x^2-15x+9=2x^3\)
\(x^4-5x^3+10x^2-15x+9=0\)
\(\left(x-1\right)\left(x^3-4x^2+6x-9\right)=0\)
TH1 : \(x-1=0\Leftrightarrow x=1\)
\(x^3-4x^2+6x-9=0\Leftrightarrow\left(x^2-x+3\right)\left(x-3\right)=0\)
TH2 : \(x-3=0\Leftrightarrow x=3\)
TH3 : \(x^2-x+3=0\)
\(\Delta=\left(-1\right)^2-4.1.3=1-12=-11< 0\)
Nên phuwong trình vô nghiệm
Vậy \(S=\left\{1;3\right\}\)
Huy tú làm vậy sai r ! nếu th 1 bên là x^2 và 1 bên 2 thì sao ????
còn rất nhiều th nên khẳng định lại là sai r nhé !!
\(\left(x^2-3x+3\right)\left(x^2-2x+3\right)=2x^2\)
Nhân tung ra :)) phần này làm nháp và mình ra được :
\(x^4-5x^3+10x^2-15x=-9\)
\(< =>x\left(x^3-5x^2+10x-15\right)=-9\)
Đến đây lập bảng và giải mấy cái pt bậc 3 thôi :D
Có chỗ nào ko lm đc thì ib mình sẽ chỉ nhiệt tình !
giải pt:
\(\dfrac{x}{2x-6}+\dfrac{x}{2x+2}=\dfrac{-2x}{\left(3-x\right)\left(x+1\right)}\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x-3\right)\left(x+1\right)}\)
\(\Leftrightarrow x^2+x+x^2-3x=4x\)
\(\Leftrightarrow2x^2-6x=0\)
\(\Leftrightarrow2x\left(x-3\right)=0\)
=>x=0(nhận) hoặc x=3(loại)
đk : x khác -1 ; 3
\(\Rightarrow x\left(x+1\right)+x\left(x-3\right)=4x\Leftrightarrow2x^2-2x-4x=0\)
\(\Leftrightarrow2x^2-6x=0\Leftrightarrow2x\left(x-3\right)=0\Leftrightarrow x=0;x=3\left(ktm\right)\)
\(\frac{2}{2x-6}+\frac{2}{2x+2}+\frac{2x}{\left(x+1\right)\left(3-x\right)}\)
giải pt
Ko có vế phải à bạn?
thêm =0 vào vế trái nha
Tự cho đkxđ nha!!!
<=> \(\frac{1}{x-3}+\frac{1}{x+1}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
<=> \(\frac{x+1}{\left(x+1\right)\left(x-3\right)}+\frac{x-3}{\left(x+1\right)\left(x-3\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
<=> \(\frac{x+1+x-3-2x}{\left(x+1\right)\left(x-3\right)}=0\)
Suy ra: x + 1 + x - 3 - 2x = 0
<=> -2 = 0 (Vô lý)
Vậy pt vô nghiệm
\(\frac{2}{2x-6}+\frac{2}{2x+2}+\frac{2x}{\left(x+1\right)\left(3-x\right)}=0\)
giải pt
Ta có : \(\frac{2}{2x-6}+\frac{1}{x+2}+\frac{2.x}{\left(x+1\right).\left(3-x\right)}=0\)
ĐKXĐ : x \(\ne\)-1 ; x \(\ne\)-2 ; x \(\ne\)3
MTC : ( x + 1 ) . ( x+ 2 ) . ( x - 3 )
<=> ( x + 1 ) . ( x + 2 ) + ( x + 1 ) . ( x + 3 ) - 2.x. ( x + 2 ) = 0
<=> x2 + x + 2.x + 2 + x2 -3.x + x -3 - 2.x2 -4.x = 0
<=> -3.x = 1
<=> x = \(\frac{-1}{3}\)
Vậy S = { \(\frac{-1}{3}\)}
ĐKXĐ: x khác 3, x khác -1
\(\frac{2}{2x-6}+\frac{2}{2x+2}+\frac{2}{\left(x+1\right)\left(3-x\right)}=0\)
<=> \(\frac{-1}{3-x}+\frac{1}{x+1}+\frac{2}{\left(x+1\right)\left(3-x\right)}=0\)
<=> \(\frac{-x-1}{\left(3-x\right)\left(x+1\right)}+\frac{3-x}{\left(3-1\right)\left(x+1\right)}+\frac{2}{\left(x+1\right)\left(3-x\right)}=0\)
<=> \(\frac{-2x+4}{\left(3-x\right)\left(x+1\right)}=0\)
<=> -2x+4=0
<=>x=-2
vậy ....
giải pt \(\frac{x^2+2x-8}{x^2-2x+3}=\left(x+1\right)\left(\sqrt{x+2}-2\right)\)
\(\frac{\left(x+4\right)\left(x-2\right)}{x^2-2x+3}=\left(x+1\right)\frac{x+2-4}{\sqrt{x+2}+2}\)
\(\left(x-2\right)\left(\frac{x+4}{x^2-2x+3}-\frac{x+1}{\sqrt{x+2}+2}\right)=0\)
+ x=2
+ chiu kho lam cai con lai