giải toán = cách lập pương trình:
một tam giác vuông có chu vi = 60cm và có cạnh huyền = 25cm.tính độ dài các cạnh góc vuông
Một tam giác vuông có chu vi = 60cm và cạnh huyền = 25cm . Tính độ dài các cạnh góc vuông ?
Gọi độ dài 1 cạnh góc vuông là x (cm), x < 25
độ dài cạnh góc vuông còn lại là 60 - 25 - x = 35 - x (cm)
Theo đề bài ta có pt :
x + (35 - x ) = 25^2 (ĐL Pytago) <=> x^2 - 35x + 300 = 0
Δ = (−35)2 − 4.1.300 = 25
x = (35+5) : 2 = 20 ; x = 35 - 20 = 15
Vậy độ dài 2 góc vuông là 20cm và 15cm
Gọi độ dài 1 cạnh góc vuông là x (cm), x < 25
độ dài cạnh góc vuông còn lại là 60 - 25 - x = 35 - x (cm)
Theo đề bài ta có pt :
x2 + (35 - x2) = 25^2 (ĐL Pytago) <=> x^2 - 35x + 300 = 0
\(\Delta=\left(-35\right)^2-4.1.300=25\)
x1 = (35+5) : 2 = 20 ; x2 = 35 - 20 = 15
Vậy độ dài 2 góc vuông là 20cm và 15cm
Tính độ dài 2 cạnh góc vuông của 1 tam giác vuông có chu vi bằng 70cm và cạnh huyền bằng 29cm
Giải bài toán bằng cách lập hệ pt
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
Giải toán bằng cách lập phương trình
Một tam giác vuông có cạnh huyền là 20 , chu vi là 48. Tình độ dài mỗi cạnh góc vuông
Bạn nào giúp mk với !!!!
Gọi x là dộ dài cạnh góc vuông thứ nhất (x < 20)
=> độ dài cạnh góc vuông thứ hai : 48 - 20 -x =28 - x
Theo đề bài ta có pt:
x2 + (28 -x)2 =202 (giải pt tìm x)
Giải bài toán bằng cách lập phương trình
Một tam giác vuông có đường cao ứng với cạnh huyền dài 24cm và chia cạnh huyền thành hai đoạn thẳng hơn kém nhau 14cm.Tính độ dài cạnh huyền và diện tích của tam giác vuông đó
Gọi độ dài đoạn thẳng ngắn hơn được chia trên cạnh huyền là x (cm) với x>0
\(\Rightarrow\) Độ dài đoạn còn lại là \(x+14\)
Áp dụng hệ thức lượng trong tam giác vuông:
\(24^2=x\left(x+14\right)\)
\(\Leftrightarrow x^2+14x-576=0\Rightarrow\left[{}\begin{matrix}x=18\\x=-32\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\) Độ dài cạnh huyền là: \(18+\left(18+14\right)=50\left(cm\right)\)
Diện tích tam giác: \(S=\dfrac{1}{2}.24.50=600\left(cm^2\right)\)
a) Một tam giác vuông có cạnh huyền bằng 20 cm, độ dài các cạnh góc vuông tỉ lện với 3 và 4. Tính độ dài các cạnh góc vuông b) Tính các cạnh của một tam giác vuông biết tỉ số các cạnh góc vuông là 5:12, chu vi của tam giác bằng 60 cm
Một tam giác vuông có độ dài các cạnh góc vuông tỉ lệ với 5 và 12, chu vi bằng 30 cm. Tính độ dài cạnh huyền.
Gọi độ dài các cạnh góc vuông của tam giác lần lượt là 5k và 12k với k> 0. Dùng định lý Py-ta-go tính được độ dài cạnh huyền là 13k, do đó
5k +12k + 13k = 30 => k = 1.
Từ đó độ dài cạnh huyền là 13 cm.
Một tam giác vuông có các cạnh góc vuông với 7 và 24, chu vi bằng 112 cm. Tính độ dài cạnh huyền
Gọi b, c là độ dài các cạnh góc vuông, a là độ dài cạnh huyền (tính bằng cm) ( 0 < b; c < a)
+) Do các cạnh góc vuông tỉ lệ với 7 và 24 nên:
⇒ b = 7k, c = 24k.
Theo định lý Py-ta-go:
a2 = b2 + c2 = (7k)2 + (24k)2 = 625k2 = (25k)2
Nên a = 25k.
Theo đề bài, chu vi tam giác bằng 112 cm nên: a + b + c = 112 (cm).
Suy ra: 25k + 7k + 24k = 112
Hay 56k = 112
Từ đó ta tính được k = 2. Vậy a = 50cm.
Một tam giác vuông có các cạnh góc vuông tỉ lệ với 7 và 24, chu vi bằng 112cm. Tính độ dài cạnh huyền
Một tam giác vuông có cạnh huyền = 60cm, hai cạnh góc vuông hơn kém nhau 12cm. Tính độ dài mỗi cạnh góc vuông của tam giác vuông đó.
Lời giải:
Gọi độ dài cạnh góc vuông lần lượt là $a$ và $b$ ($a>b>0$) (cm)
Áp dụng định lý Pitago: $a^2+b^2=60^2=3600(*)$
$a-b=12$
$\Leftrightarrow a=b+12$. Thay vào $(*)$ thì:
$(b+12)^2+b^2=3600$
$\Leftrightarrow 2b^2+24b-3456=0$
$\Leftrightarrow b^2+12b-1728=0$
$\Leftrightarrow (b-36)(b+48)=0$
Do $b>0$ nên $b=36$ (cm)
$a=b+12=36+12=48$ (cm)