Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn Du
Xem chi tiết
Nguyễn Quang Trung
Xem chi tiết
Mr Lazy
9 tháng 6 2016 lúc 12:24

\(\Leftrightarrow\left[x^2+\left(\frac{2x}{x-2}\right)^2+2.x.\frac{2x}{x-2}\right]-\frac{4x^2}{x-2}=12\)

\(\Leftrightarrow\left(x+\frac{2x}{x-2}\right)^2-\frac{4x^2}{x-2}-12=0\)

\(\Leftrightarrow\left(\frac{x^2}{x-2}\right)^2-4.\frac{x^2}{x-2}-12=0\)

Thắng Nguyễn
9 tháng 6 2016 lúc 11:53

\(\Leftrightarrow\frac{4x^2}{x^2-4x+4}+x^2-12=0\)

\(\Leftrightarrow\frac{x^4-4x^3-4x^2+48x-48}{x^2-4x+4}=0\)

\(\Leftrightarrow x^4-4x^3-4x^2+48x-48=0\)

\(\Leftrightarrow x^2+2x-4=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\sqrt{5}-1\\x=\sqrt{5}-1\end{cases}}\)

Phan Hải Đăng
Xem chi tiết
Minh Tâm
7 tháng 3 2020 lúc 21:55

a) \(pt\Leftrightarrow\frac{6}{x^2+2}-1+\frac{7}{x^2+3}-1+\frac{12}{x^2+8}-1-\frac{3x^2+16}{x^2+10}+2=0\)

\(\Leftrightarrow\frac{4-x^2}{x^2+2}+\frac{4-x^2}{x^2+3}+\frac{4-x^2}{x^2+8}+\frac{4-x^2}{x^2+10}=0\)

\(\Leftrightarrow\left(4-x^2\right)\left(\frac{1}{x^2+2}+\frac{1}{x^2+3}+\frac{1}{x^2+8}+\frac{1}{x^2+10}\right)=0\)

\(\Leftrightarrow4-x^2=0\)(do \(\frac{1}{x^2+2}+\frac{1}{x^2+3}+\frac{1}{x^2+8}+\frac{1}{x^2+10}>0,\forall x\))

\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)

\(KL...\)

Khách vãng lai đã xóa
KAl(SO4)2·12H2O
7 tháng 3 2020 lúc 23:13

2x(8x - 1)2(4x - 1) = 9

<=> 512x4 - 256x3 + 40x2 - 2x = 9

<=> 512x4 - 256x3 + 40x2 - 2x - 9 = 0

<=> (2x - 1)(4x + 1)(64x4 - 16x + 9) = 0

vì 64x4 - 16x + 9 khác 0 nên:

<=> 2x - 1 = 0 hoặc 4x + 1 = 0

<=> x = 1/2 hoặc x = -1/4

Khách vãng lai đã xóa
:vvv
Xem chi tiết
Yeutoanhoc
22 tháng 6 2021 lúc 17:05

Điều kiện:`x>=2`

Ta có:

`sqrt{x+6}-sqrt{x-2}=(x+6-x+2)/(sqrt{x+6}+sqrt{x-2})`

`=8/(\sqrt{x+6}+sqrt{x-2})`

`pt<=>8/(sqrt{x+6}+sqrt{x-2})(1+sqrt{(x-2)(x+6)})=8`

`<=>(1+sqrt{(x-2)(x+6)})/(sqrt{x+6}+sqrt{x-2})=1`

`<=>1+sqrt{(x-2)(x+6)}=sqrt{x+6}+sqrt{x-2}`

`<=>sqrt{(x-2)(x+6)}-sqrt{x+6}=sqrt{x-2}-1`

`<=>sqrt{x+6}(sqrt{x-2}-1)=sqrt{x-2}-1`

`<=>(sqrt{x-2}-1)(sqrt{x+6}-1)=0`

Vì `x>=2=>x+6>=8=>sqrt{x+6}>=2sqrt2`

`=>sqrt{x+6}-1>=2sqrt2-1>0`

`<=>sqrt{x-2}=1`

`<=>x=3(tm)`

Vậy `S={3}`

Phác Chí Mẫn
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 2 2020 lúc 7:12

ĐKXĐ: ...

\(\Leftrightarrow\frac{2\left(x^2+1\right)}{\left(1-x^2\right)^2}+\frac{1}{4x^2}=\frac{\left(3x^2+1\right)^2}{144}\)

Đặt \(\left\{{}\begin{matrix}1-x^2=a\\4x^2=b\end{matrix}\right.\)

\(\Rightarrow\frac{2a+b}{a^2}+\frac{1}{b}=\frac{\left(a+b\right)^2}{144}\)

\(\Leftrightarrow\frac{\left(a+b\right)^2}{a^2b}=\frac{\left(a+b\right)^2}{144}\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\left(vn\right)\\a^2b=144\end{matrix}\right.\)

\(\Leftrightarrow\left(1-x^2\right)^2.4x^2=144\)

\(\Leftrightarrow\left(2x-2x^3\right)^2=12^2\)

\(\Leftrightarrow...\)

Khách vãng lai đã xóa
NOO PHƯỚC THỊNH
Xem chi tiết
Nguyệt
31 tháng 1 2019 lúc 21:40

câu a tự quy đồng cùng  mẫu rồi làm thôi :"))

b) \(\left[x.\left(x-1\right)\right].\left[\left(x-2\right).\left(x+1\right)\right]=24\)

\(\Leftrightarrow\left(x^2-x\right).\left(x^2-x-2\right)=24\)

Đặt \(x^2-x=k\), ta có:

\(k.\left(k-2\right)=24\)

\(\Leftrightarrow k^2-2k+1=25\)

\(\Leftrightarrow\left(k-1\right)^2=5^2\Leftrightarrow\orbr{\begin{cases}k-1=5\\k-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}k=6\\k=-4\end{cases}}}\)

\(k=6\Rightarrow x^2-x=6\Rightarrow x^2-x-6=0\)

\(\Rightarrow x^2-3x+2x-6=0\Rightarrow x.\left(x-3\right)+2.\left(x-3\right)=0\)

\(\Rightarrow\left(x+2\right).\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

\(k=-4\Rightarrow x^2-x+4=0\Rightarrow x^2-x+\frac{1}{4}+\frac{15}{4}=0\Rightarrow\left(x-\frac{1}{2}\right)^2=-\frac{15}{4}\left(\text{loại}\right)\)

c)\(x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^4+2x^3+2x^2+4x+3x^2-12=0\)

\(\Leftrightarrow x^3.\left(x+2\right)+2x.\left(x+2\right)+3.\left(x^2-2^2\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(x^3+5x-6\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(x^3-x^2+x^2-x+6x-6\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left[x^2.\left(x-1\right)+x.\left(x-1\right)+6.\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right).\left(x-1\right).\left(x^2+x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}\text{vì }x^2+x+6>0\left(\text{tự c/m}\right)}\)

p/s: bn tự kết luận nha :))

Nguyễn Thảo Hân
Xem chi tiết
Lê Bùi
5 tháng 2 2018 lúc 21:17

b) \(\dfrac{x-5}{2017}-1+\dfrac{x-2}{2020}-1=\dfrac{x-6}{2016}-1+\dfrac{x-68}{1954}-1\)

\(\dfrac{x-2022}{2017}+\dfrac{x-2002}{2020}=\dfrac{x-2022}{2016}+\dfrac{x-2022}{1954}\)

\(\Leftrightarrow\left(x-2022\right)\left(\dfrac{1}{2017}+\dfrac{1}{2020}-\dfrac{1}{2016}-\dfrac{1}{1954}\right)=0\)

\(\Leftrightarrow x-2022=0\left(\dfrac{1}{2017}+\dfrac{1}{2020}-\dfrac{1}{2016}-\dfrac{1}{1954}\ne0\right)\)

\(\Leftrightarrow x=2022\)

Phác Chí Mẫn
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 4 2019 lúc 23:43

\(x\ne0\)

\(\frac{2x+1}{x^2}+1+\frac{x^2}{2\left(3x^2+4x+2\right)}-\frac{1}{2}=0\)

\(\Leftrightarrow\frac{x^2+2x+1}{x^2}-\frac{2\left(x^2+2x+1\right)}{2\left(3x^2+4x+2\right)}=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(\frac{1}{x^2}-\frac{1}{3x^2+4x+2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^2=3x^2+4x+2\end{matrix}\right.\) \(\Rightarrow x=-1\)

Wayne B
Xem chi tiết