Bài 4: Cho tam giác ABC cân tại A;đường cao AH và đường trung tuyến BK cắt nhau tại G. Tia CG cắt cạnh AB tại điểm I
a) Chứng minh: G là trọng tâm của tam giác ABC. Chứng minh IA=IB
Bài 4: Cho tam giác ABC vuông cân tại A, BC=2cm. Ở phía ngoài tam giác ABC vẽ tam giác ACE vuông cân tại E.
a) Chứng minh rằng EC vuông góc với BC
b) Tính số đo các góc của tứ giác ABCE.
Bài 5: Cho tam giác ABC vuông ở A, AH là đường cao, M là một điểm trên BC sao cho CM=CA. Đường thẳng đi qua M song song với CA cắt AB tại I.
a) Chứng minh AM là phân giác của góc BAH
b) Chứng minh rằng luôn luôn có AB+AC< AH+BC
Mình đang cần gấp bài này. Các bạn giúp mình nhé cảm ơn các bạn nhiều.
Bài 4:
a) Ta có tam giác ABC vuông cân tại A, nên góc BAC = 45 độ. Vì tam giác ACE vuông cân tại E, nên góc CAE = 45 độ. Từ đó suy ra góc CAE + góc BAC = 90 độ, tức là EC vuông góc với BC.
b) Vì tam giác ABC vuông cân tại A, nên góc BAC = 45 độ. Vì tam giác ACE vuông cân tại E, nên góc CAE = 45 độ. Từ đó suy ra góc BAE = góc BAC + góc CAE = 45 độ + 45 độ = 90 độ. Do đó, tứ giác ABCE là tứ giác vuông.
Bài 5:
a) Gọi K là giao điểm của đường thẳng AM và BH. Ta cần chứng minh góc BAK = góc CAK.
Vì CM = CA, ta có góc CMA = góc CAM. Vì đường thẳng AM song song với CA, nên góc CMA = góc KAB (do AB cắt đường thẳng AM tại I). Từ đó suy ra góc CAM = góc KAB.
Vì AH là đường cao, nên góc BAH = góc CAH. Từ đó suy ra góc BAK = góc CAK.
Vậy, AM là phân giác của góc BAH.
b) Ta có AB + AC = AB + AH + HC = BH + HC > BC (theo bất đẳng thức tam giác).
Vậy, luôn luôn có AB + AC < AH + BC.
Bài 1: Cho tam giác ABC vuông tại A, tanB=3\4, AB=4cm. Giải tam giác?
Bài 2 : Cho tam giác ABC cân tại A, góc BAC=42, AB=AC=7cm,
a Đường cao AH=?
b BC=?
c Đường cao CK=?
Bài 3: Cho tam giác ABC cân tại A, AB=AC=8,5cm, BC=8cm.
a Tính các góc của tam giác ABC?
b Diện tích của tam giác ABC=?
giải từng bước...
Bài 1: Cho tam giác ABC cân tại A. Lấy D, E thuộc BC sao cho BD = CF. CMR: tam giác ABC cân tại A.
Bài 2: Tam giác ABC cân tại A. Lấy M thuộc AB, N thuộc AC sao cho AM = AN.
a) CMR: MN//BC.
b) Cho CM cắt BN tại I. CMR: IB = IC.
Bài 3: Tam giác ABC cân tại A. Lấy M thuộc BC. Vẽ MK//AB (K thuộc AC). CMR: MK = KC.
bài 4;cho tam giác ABC cân tại A . Đường trung tuyến BDvà CE cắt nhau tại G
a,chứng minh tam giác DGE cân
b, chứng minh BD+CE > 3/2 BC
a: Xét ΔEBC và ΔDCB co
EB=DC
góc EBC=góc DCB
CB chung
=>ΔEBC=ΔDCB
=>EC=BD; góc GBC=góc GCB
=>GB=GC
=>GE=GD
=>ΔGED cân tại G
b: BD+CE=3/2(BG+CG)>3/2BC
Bài 4. Cho tam giác ABC cân tại A có AB cm = 5 , BC cm = 6 . Vẽ AH là tia phân giác của góc BAC ( H thuộc BC ). a) Chứng minh: = ABH ACH . b) Tính AH ? c) Gọi G là trọng tâm của tam giác ABC . Tính GH ?
Bài 5. Cho tam giác MNP cân tại P có PM cm = 5 , MN cm = 6 . Vẽ PH là tia phân giác của góc MPN ( H thuộc MN ). a) Chứng minh: = MPH NPH . b) Tính PH ? c) Gọi G là trọng tâm của tam giác MNP . Tính HG
Bài 1: Cho tam giác ABC cân tại A có các đường trung tuyến BE và CD . Chứng minh rằng BE bằng CD
Bài 2: Cho tam giác ABC có đường trung tuyến BE và CD, biết BE = CD . Chứng minh rằng tam giác ABC cân tại A
Bài 3: Cho tam giác ABC chứng minh rằng a) Nếu tam giác ABC vuông góc tại A , có trung tuyến AM =1/2 BC
b) Nếu trung tuyến AM =1/2 BC thì tam giác ABC vuông góc tại A
Bài 6: Cho tam giác ABC vuông cân tại A, về phía ngoài tam giác ABC ta dựng tam giác
BCD vuông cân tại B. Tứ giác ABDC là hình gì ? Vì sao ?
Ta có: \(\widehat{DCB}=\widehat{CBA}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
Xét tứ giác ABDC có DC//BA
nên ABDC là hình thang
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình thang vuông
Bài 5: Cho tam giác ABC vuông cân tại A. Vẽ ra phía ngoài tam giác ABC một tam giác BCD vuông cân tại B. Hỏi tứ giác ABDC là hình gì? Tại sao?
Bài giải
Vì \(\Delta ABC\) vuông cân tại A nên \(\widehat{B_1}=\widehat{C_1}=\left(180^o-90^o\right)\text{ : }2=45^o\)
Vì \(\Delta BCD\) vuông cân tại B nên \(\widehat{D}=\widehat{C_2}=\left(180^o-90^o\right)\text{ : }2=45^o\)
\(\Rightarrow\text{ }\widehat{B_1}=\widehat{C_2}\left(=45^o\right)\) nên \(AB\text{ }//\text{ }CD\)
\(\Rightarrow\text{ Tứ giác ABCD là hình thang}\)
Bài 1 :Cho tam giác ABC cân tại A, góc A= 20 độ. Trên cạnh AB lấy điểm D sao cho AD=BC. CMR:góc DCA= 1/2 góc A
Bài 2 :Cho tam giác ABC vuông cân tại A, góc C=15 độ. Trên tia BA lấy điểm O
sao cho BO=2AC.CMR : tam giác OBC cân.
Bài 4: Cho tam giác ABC cân tại A;đường cao AH và đường trung tuyến BK cắt nhau tại G. Tia CG cắt cạnh AB tại điểm I
b) Chứng minh tam giác AIG= tam giác AKG
Tham khảo
b) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG
Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
góc IAG = góc KAG (cmt)
AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)