(2x2+1)(4x−3)=(2x2+1)(x−12)
Tìm số nguyên x biết:
a) 12-(2x2-3)=7
b) 3x2-12=2x2+4
c) 2x-3.(2x+1)=4x-5.(x-3)
d) (x-2).(x+5)=0
Làm 1 câu bất kì cũng dc ạ!
a, 12 - (2\(x^2\) - 3) = 7
2\(x^2\) - 3 = 12 - 7
2\(x^2\) - 3 = 5
2\(x^2\) = 8
\(x^2\) = 4
\(\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
a) \(12-\left(2x^2-3\right)=7\\ 12-2x^2+3=7\\ 15-2x^2=7\\ 2x^2=15-7=8\\ x^2=8:2=4\\ x=\pm2\)
b) \(3x^2-12=2x^2+4\\ 3x^2-2x^2=12+4\\ x^2=16\\ x=\pm4\)
b, 3\(x^2\) - 12 = 2\(x^2\) + 4
3\(x^2\) - 2\(x^2\) = 12 + 4
\(x^2\) = 16
\(\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)
Giúp vs ạ
Bài 1 giải các bất phương trình sau
a.x2 - x - 6 = 0
b.2x2 - 7x + 5 < 0
c.3x2 - 9x + 6 ≥ 0
d.2x2 - 5x + 3 < 0
Bài 2 Giải phương trình sau
A.√x2 + x + 5 = √2x2 - 4x + 1
B.√11x2 -14x - 12 = √3x2 + 4x - 7
Bài 2:
a: =>2x^2-4x+1=x^2+x+5
=>x^2-5x-4=0
=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)
b: =>11x^2-14x-12=3x^2+4x-7
=>8x^2-18x-5=0
=>x=5/2 hoặc x=-1/4
Kết quả rút gọn biểu thức (x + 2)(x + 3) + (x – 1)2
A.2x2 + 4x + 7.
B.2x2 + 3x + 6.
C.2x2 + 4x + 6.
D.2x2 + 3x + 7.
(2x2 + 1)(4x-3)=(2x2+1)(x-13)
\(\left(2x^2+1\right)\left(4x-3\right)=\left(2x^2+1\right)\left(x-13\right)\)
\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3-x+13\right)=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(3x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+1=0\\3x+10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=-\dfrac{1}{2}\left(VN\right)\\x=-\dfrac{10}{3}\end{matrix}\right.\)
\(S=\left\{-\dfrac{10}{3}\right\}\)
a. (x – 1)(5x + 3) = (3x – 8)(x – 1)
b. 3x(25x + 15) – 35(5x + 3) = 0
c. (2 – 3x)(x + 11) = (3x – 2)(2 – 5x)
d. (2x2 + 1)(4x – 3) = (2x2 + 1)(x – 12)
e. (2x – 1)2 + (2 – x)(2x – 1) = 0
f. (x + 2)(3 – 4x) = x2 + 4x + 4
\(a,\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
\(\left(x-1\right)\left(5x+3-3x+8\right)=0\)
\(\left(x-1\right)\left(2x+11\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\2x=-11\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=-\frac{11}{2}\end{cases}}}\)
\(b,3x\left(25x+15\right)-35\left(5x+3\right)=0\)
\(15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\left(5x+3\right).5\left(3x-7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x+3=0\\5\left(3x-7\right)=0\end{cases}\Rightarrow\orbr{\begin{cases}5x=-3\\3x-7=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{5}\\3x=7\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{5}\\x=\frac{7}{3}\end{cases}}}\)
\(c,\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)
\(\left(3x-2\right)\left(2-5x\right)+\left(3x-2\right)\left(x+11\right)=0\)
\(\left(3x-2\right)\left(2-5x+x+11\right)=0\)
\(\left(3x-2\right)\left(13-4x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-2=0\\13-4x=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=2\\4x=13\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{13}{4}\end{cases}}}\)
còn đâu tự lm lười :_#
a) 2x(x + 1) – 2x2 = 0
b) 3(x – 7) + 4x(x – 7) = 0
c) x2 – x = 12
\(a)2x(x+1)-2x^2=0 <=> 2x^2+2x-2x^2=0 \\<=>2x=0<=>x=0 \\b)3(x-7)+4x(x-7)=0<=>(4x+3)(x-7)=0 \\<=>4x+3=0\ hoặc\ x+7=0 \\<=>x=\dfrac{-3}{4}\ hoặc\ x=-7 \\c)x^2-x=12<=>x^2-x-12=0 \\<=>(x+3)(x-4)=0 \\<=>x+3=0\ hoặc\ x-4=0 \\<=>x=-3\ hoặc\ x=4\)
1)Tìm GTNN của bt:
a) A=x2(x-1)2+2x2-4x-1
b) B=(x-5)(x-3)(x+2)(x+4)+2022
2)
a) Phân tích đa thức thành nhân tử
x3-2x2+26x-24
b) Với n là số nguyên . CMR: 7n3-9n2+26n-12
2.a) (ko phân tích được, bạn coi lại nhé)
b) phần còn lại của chứng minh là gì thế bạn?
Cho biểu thức P= 1+ 3/x2+5x+6 : ( 8x2/ 4x3-8x2 - 3x/ 3x2-12 -1/x+2)
A) Rút gọn P
B) Tìm các giá trị của x để P= 0; P= 1
C) Tìm cã giá trị của x để P> 0
Cho biểu thức
Q= (2x-x2/ 2x2 +8 - 2x2/ 3x3-2x2+4x-8) (2/x2 + 1-x/x)
A) Rút gọn Q
B) Tìm giá trị nguyên của x để Q có giá trị nguyên
Bài 1:
a) Ta có: \(P=1+\dfrac{3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{4}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\dfrac{4\left(x+2\right)-x-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{4x+8-x-x+2}\)
\(=1+3\cdot\dfrac{\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=1+\dfrac{3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{\left(x+3\right)\left(2x+10\right)+3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{2x^2+10x+6x+30+3x-6}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{2x^2+19x-6}{\left(x+3\right)\left(2x+10\right)}\)
Thực hiện phép tính:
a)2x(3x2 - 5x + 3) b)-2x2(x2 + 5x - 3) c)-1/2x2(2x3 - 4x + 3)
d) (2x - 1)(x2 +5- 4) c) 7x(x - 4) - (7x + 3)(2x2 - x + 4).
a: \(=6x^3-10x^2+6x\)
b: \(=-2x^4-10x^3+6x^2\)
c: \(=-x^5+2x^3-\dfrac{3}{2}x^2\)
d: \(=2x^3+10x^2-8x-x^2-5x+4=2x^3+9x^2-13x+4\)