cho hàm số \(y=x^2\) (P). Gọi A và B là hai điểm thuộc (P) lần lượt có hoành độ là 2;-3. Viết ptrình đường thẳng AB
cho hàm số y=x^2 có đồ thị (P). Gọi A và B là 2 điểm thuộc (P) lần lượt có hoành độ là -1 và 2. Viết phương trình đường thẳng AB
- Thay x = -1 và x = 2 vào hàm số ( P ) ta được :
\(\left[{}\begin{matrix}y=1\\y=4\end{matrix}\right.\)
=> Đường thẳng AB đi qua 2 điểm ( -1; 1 ) ; ( 2 ; 4 )
- Gọi đường thẳng AB có dạng y = ax + b
- Thay hai điểm trên lần lượt vào phương trình đường thẳng ta được :
\(\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
Vậy phương trình đường thẳng AB có dạng : y = x + 2 .
Cho hàm số y=x^2 (P)
Gọi A và B là hai điểm thuộc (P) lần lượt có hoành độ là -1 và 2. Viết phương trình đường thẳng AB
Cho hai hàm số y=-x+2 và y=x^2 có đồ thị lần lượt là (d) và (P).
Điểm A thuộc (P) có hoành độ –2; điểm B(0; –1), tìm điểm C thuộc trục hoành sao cho diện tích tam giác ABC bằng 4(đvdt).
Cho hàm số y = f(x) = mx + 2m − 3 có đồ thị (d). gọi A, B là hai điểm thuộc đồ thị
và có hoành độ lần lượt là −1 và 2.
1 Xác định tọa độ hai điểm A và B.
2 Tìm m để cả hai điểm A và B cùng nằm phía trên trục hoành.
3 Tìm điều kiện của m để f(x) > 0, ∀x ∈ [−1; 2]
Bài 9: Cho hàm số (P): y = \(x^2\)
1. Vẽ (P)
2. Gọi A,B là hai điểm thuộc (P) có hoành độ lần lượt là -1 và 2. Viết phương trình đường thẳng AB
3. Viết Phương trình đường thẳng (d) song song với AB và tiếp xúc với (P)
Cho hàm số y = f(x) = 2/3x có đồ thị là (d)
a)Vě (d)
c)Tìm giá trị nhỏ nhất của y khi -6 d)Gọi A,B là hai điểm thuộc (d) có hoành độ lần lượt là -2,5 và 4. Tìm trên đoạn thắng AB
những điểm có tọa độ là các số nguyên.
Câu 1. 1. Cho hàm số y=f(x)=1/3x^2 a) Cho hai điểm A và B thuộc đồ thị hàm số có hoành độ lần lượt là –3 và 9 tìm. Tọa độ 2 điểm A và B Vt phương trình đường thẳng đi qua hai điểm A và B
Cho hàm số y=f(x)=x+3/2.|x|
a, Vẽ đồ thị hàm số trên
b, Gọi E và F là 2 điểm thuộc đồ thị hàm số trên có hoành đọ lần lượt là -4 và 4/5. Xác định tọa độ của 2 điểm E và F để 2 điểm ME + MF là nhỏ nhất
2) Cho hàm số 2 y=x2 có đồ thị là parabol (P), hàm số y=(m- 2)x- m+3 có đồ thị là đường thẳng (d).a) Tìm giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt.b) Gọi A và B là hai giao điểm của (d) và (P), có hoành độ lần lượt là x1 ; x2 . Tìm các giá trị của m để x1,x2 là độ dài hai cạnh của một tam giác vuông cân.
a, - Xét phương trình hoành độ giao điểm :\(x^2=\left(m-2\right)x-m+3\)
\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\left(I\right)\)
Có \(\Delta=b^2-4ac=\left(m-2\right)^2-4\left(m-3\right)\)
\(=m^2-4m+4-4m+12=m^2-8m+16=\left(m-4\right)^2\)
- Để P cắt d tại 2 điểm phân biệt <=> PT ( I ) có 2 nghiệm phân biệt .
<=> \(\Delta>0\)
\(\Leftrightarrow\left(m-4\right)^2>0\)
\(\Leftrightarrow m\ne4\)
Vậy ...
b, Hình như đề thiếu giá trị của cạnh huỳnh hay sao á :vvvv
a) Phương trình hoành độ giao điểm là:
\(x^2=\left(m-2\right)x-m+3\)
\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\)
\(\Delta=\left(m-2\right)^2-4\cdot\left(m-3\right)=m^2-4m+4-4m+12=m^2-8m+16\)
Để (d) cắt (P) tại hai điểm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow m^2-8m+16>0\)
\(\Leftrightarrow\left(m-4\right)^2>0\)
mà \(\left(m-4\right)^2\ge0\forall m\)
nên \(m-4\ne0\)
hay \(m\ne4\)
Vậy: khi \(m\ne4\) thì (d) cắt (P) tại hai điểm phân biệt