A=1.101+2.102+3.103+...+299.399 B=1²+2²+5²+...+299².
So sánh A và B
cho A=1.99 + 2.98 + 3.97 + ..... + 99.1
và B= 1.101+2.102+3.103+.....+9.199
tính A+B
So sánh
a) M=1/1^2+1/2^2+1/3^2+...................+1/50^2 và N=2
b) P= 2015^2015+1/2015^2016+1 và Q=2015^2016-2/2015^2017-2
Tính A+B biết
A=1.99+2.98+3.97+..............+99.1
B=1.101+2.102+3.103+.....................+99.199
cho A = 1.99 + 2.98 + 3.97 + ... + 99.1 và B = 1.101 + 2.102 + 3.103 + ... + 99.199
Tính A+B
A+B = (1.99+2.98+3.97+...+99.1)+(1.101+2.102+3.103+...+99.199)
A+B = (1.99+1.101)+(2.98+2.102)+(3.97+3.103)+...+(99.1+99.199)
A+B = 1(99+101) + 2(98+102) + 3(97.103)+...+99(1+199)
A+B = 1.200 + 2.200 + 3.200 +...+ 99.200
A+B = 200.(1+2+3+...+200)
A+B = 200.4950
A+B = 990000
Cho A= 1.99+2.98+3.97+...+99.1
và B= 1.101+2.102+3.103+...+99.199
Tính A+B
A + B = ( 1 . 99 + 2 . 98 + 3 . 97 + ... + 99 . 1 ) + ( 1 . 101 + 2 . 102 + 3 . 103 + ... + 99 . 199 )
A + B = 99 . ( 1 + 199 ) + 98 . ( 2 + 198 ) + 97 . ( 3 + 197 ) + ... + 2 . ( 102 + 98 ) + 1 . ( 99 + 101 )
A + B = 99 . 200 + 98 . 200 + 97 . 200 + ... + 2 . 200 + 1 . 200
A + B = ( 99 + 98 + 97 + ... + 2 + 1 ) . 200
A + B = 4950 . 200
A + B = 990000
B= 1.101 + 2.102 + 3.103 + ... + 99.199
A=1/1.101+1/2.102+1/3.103+...+1/10.110
tính A
Tính A+B
A= 1.99+2.98+3.97+.............+99.1
B=1.101+2.102+3.103+............+99.199
so sánh P và Q
P=2016/2017+2017/2018
Q= 2016+2017+2018/2017+2018+2019
A+B=(1.99+2.98+...+99.1)+(1.101+2.102+...+99.199)
=(1.99+1.101)+(2.98+2.102)+...+(99.1+99.199)
=1.(99+101)+2.(98+102)+...+99(1+199)
=200+2.200+...+99.200
=200.(1+2+3+4+...+99)
=200.4950
=.....
(1/1.101 + 1/2.102 + 1/3.103 +....+1/10.110) . x = 1/1.11 + 1/2.12 + 1/100.110
Ta có:
$(\frac{1}{1.101}+\frac{1}{2.102}+...+\frac{1}{10.110}).x=\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{1}{100.110}$
$\Leftrightarrow \frac{1}{100}\left ( \frac{1}{1}-\frac{1}{100}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110} \right )x=\frac{1}{10}\left ( \frac{1}{1}-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110} \right )$
$\Leftrightarrow \left ( \frac{1}{1}-\frac{1}{100}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110} \right )x=10\left ( \frac{1}{1}-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110} \right )$
Đặt $A=\frac{1}{1}-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}$
$\Rightarrow A=\left ( 1+\frac{1}{2}+...+\frac{1}{10} \right )+\left ( \frac{1}{11}+\frac{1}{12}+...+\frac{1}{100} \right )-\left ( \frac{1}{11}+\frac{1}{12}+...+\frac{1}{100} \right )-\left (\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110} \right )$
$\Rightarrow A=\left ( 1+\frac{1}{2}+...+\frac{1}{10} \right )-\left (\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110} \right )$
$\Rightarrow A=\frac{1}{1}-\frac{1}{100}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}$
Thay vào phương trình, ta có:
$\left ( \frac{1}{1}-\frac{1}{100}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110} \right )x=10\left ( \frac{1}{1}-\frac{1}{100}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110} \right )$
$\Leftrightarrow x=10$
( 1/1.101 + 1/2.102 + 1/3.103 +...+ 1/10.100 ).x = 1/1.11 + 1/2.12 + 1/3.13 + ...+ 1/100.110
(100/1.101 + 100/2.102 + 100/3.103 +....+100/10.110) . x
= (10/1.11 + 10/2.12 + 10/100.110 )10
=>(1+1/2+1/3+...+1/10-1/101-...-1/110)x
=(1+1/2+1/3+...+1/10+1/11+...+1/100-1/11-...-1/100-1/101-...-1/110)10 =>(1+1/2+1/3+...+1/10-1/101-...-1/110)x
=(1+1/2+1/3+...+1/10-1/101-...-1/110)10 =>x=10