Ta có:
$(\frac{1}{1.101}+\frac{1}{2.102}+...+\frac{1}{10.110}).x=\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{1}{100.110}$
$\Leftrightarrow \frac{1}{100}\left ( \frac{1}{1}-\frac{1}{100}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110} \right )x=\frac{1}{10}\left ( \frac{1}{1}-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110} \right )$
$\Leftrightarrow \left ( \frac{1}{1}-\frac{1}{100}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110} \right )x=10\left ( \frac{1}{1}-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110} \right )$
Đặt $A=\frac{1}{1}-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}$
$\Rightarrow A=\left ( 1+\frac{1}{2}+...+\frac{1}{10} \right )+\left ( \frac{1}{11}+\frac{1}{12}+...+\frac{1}{100} \right )-\left ( \frac{1}{11}+\frac{1}{12}+...+\frac{1}{100} \right )-\left (\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110} \right )$
$\Rightarrow A=\left ( 1+\frac{1}{2}+...+\frac{1}{10} \right )-\left (\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110} \right )$
$\Rightarrow A=\frac{1}{1}-\frac{1}{100}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}$
Thay vào phương trình, ta có:
$\left ( \frac{1}{1}-\frac{1}{100}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110} \right )x=10\left ( \frac{1}{1}-\frac{1}{100}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110} \right )$
$\Leftrightarrow x=10$