Cho tam giác ABC vuông tại A có BAC=60 độ, độ dài trung tuyến BD = 3a/4. Tính diện tích tam giác ABC theo a
Cho tam giác ABC vuông tại C có BAC=60 độ và độ dài trung tuyến BD của tam giác ABC =3a/4. Tính diện tích tam giác ABC theo a
Cho tam giác ABC có BC = a, góc BAC = 60 độ và hai đường trung tuyến BM và CN vuông góc với nhau. Tính diện tích tam giác
cho tam giác ABC vuông tại A. Hai đường trung tuyến AE và BD vuông góc với nhau. Biết AB = 1 (đơn vị độ dài). Tính diện tích tam giác ABC
có 3 cách chon cách nào thì chọn
đặt BC=a ---> AD=a/2. Vì G là giao điểm các đường trung tuyến AD,BE nên DG=AD/3 =a/6 và AG=2GD=a/3
Áp dụng Pitago cho tg ABG : BG^2= AB^2 -AG^2 = 6 -(a/3)^2 --> BG^2= 6 -(a^2)/9 (*)
Áp dụng Pitago cho tg BDG: BG^2= BD^2-DG^2 = (a/2)^2 -(a/6)^2 = (2/9).(a^2) (**)
So sánh (*) và (**) ta có BG^2 = 6 -(a^2)/9 = (2/9).(a^2) --> 6= (a^2)/9 + (2/9). (a^2) ---> a^2 =18 --> a=√18 =3√2
cách 2
Ta có góc BEA = góc DAB = góc DBA
=> tam giác BAE đồng dạng tam giác CAB
=> AC/AB = AB/AE
=> AC .AE = 6 <=> AC^2 = 12 ( AE = 1/2 AC)
Pytago :
BC^2 = AC^2 + BC^2 = 24
=> BC = 3 căn2
Cách 3
Ta có góc BEA = góc DAB = góc DBA
=> tam giác BAE đồng dạng tam giác CAB
=> AC/AB = AB/AE
=> AC .AE = 6 <=> AC^2 = 12 ( AE = 1/2 AC)
Pytago :
BC^2 = AC^2 + BC^2 = 24
=> BC = 3 căn2
Tung 11A2 · 6 năm trước
Không biết đúng ko
1.Tam giác ABC vuông tại A có trung tuyến AM vuông góc với trung tuyến BN, cho AB = x. Tính AC, BC theo x?
2. Tam giác ABC vuông tại A có BD là đường phân giác, trung tuyến AM vuông góc BD. Cho BD = \(2\sqrt{3}x\)(x>0). Tính độ dài các cạnh của tam giác ABC?
Bài 1: Cho hình thoi ABCD có cạnh a=30,1975 cm và góc ABC=60 độ . G là trọng tâm tam giác
ABC . Tính diện tích tứ giác AGCD
Bài 2: Cho tam giác ABC vuông tại A có AB=6,251 cm và góc B=56 độ .
a, Tính BC, AC và góc C
b, Tính độ dài đường cao AH và diện tích tam giác ABC
c, Tính độ dài đường trung tuyến AM và phân giác AD của tam giác ABC
Cho hình trụ tam giác ABC.A'B'C' có BB'=a, góc giữa đường thẳng BB' và mặt phẳng (ABC) bằng 60 độ; tam giác ABC vuông tại C và góc BAC bằng 60 độ. Hình chiếu vuông góc của B' lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Tính thể tích của khối tứ diện A'ABC theo a
Góc giữa BB' và (ABC) là \(\widehat{B'BG}=60^0\). Suy ra đường cao \(B'G=BB'.\sin60^0=\dfrac{a\sqrt{3}}{2}\)
Lại có \(BG=BB'.\cos60^0=\dfrac{a}{2}\)
Gọi M là trung điểm AC thì \(BM=\dfrac{3}{2}BG=\dfrac{3a}{4}\)
Đặt AC=x thì \(BC=AC.\tan 60^0=x\sqrt{3}\)
Suy ra \(BM=\sqrt{BC^2+CM^2}=\sqrt{3x^2+\dfrac{x^2}{4}}=\dfrac{x\sqrt{13}}{2}=\dfrac{3a}{4}\). Suy ra \(x=\dfrac{3a\sqrt{13}}{26}\)
Do đó \(S_{ABC}=\dfrac{1}{2}BC.AC=\dfrac{x^2\sqrt{3}}{2}=\dfrac{9a^2\sqrt{3}}{52}\)
Vậy \(V_{A'ABC}=\dfrac{1}{3}BB'.S_{ABC}=\dfrac{3a^2\sqrt{3}}{52}\)
Gọi G là trong tâm tam giác ABC ta có B′G⊥(ABC)Từ đó B′BCG^=600 là góc mà B′B′ tạo với mặt phẳng (ABC). Trong tam giác vuông BB′G ta có ngay: BG=a2,B′G=a3√2BG=a2,B′G=a32
Đặt AB=2xAB=2x, trong tam giác vuông ABCABC ta có:
AC=x,BC=x3√AC=x,BC=x3 (do ABCˆ=600ABC^=600)
Giả sử BG∩ACBG∩AC thì BN=a2BG=3a4BN=a2BG=3a4.
Áp dụng định lí py ta go trong tam giác vuông BNCBNC ta có:
BN2=NC2+BC2⇒9a216=x24+3x2⇒x2=9a252(1)BN2=NC2+BC2⇒9a216=x24+3x2⇒x2=9a252(1)
ta có VA′ABC=13SABC.B′G=13.12.AB.BC.a3√2=a3√12x.x3√=ax24(2)VA′ABC=13SABC.B′G=13.12.AB.BC.a32=a312x.x3=ax24(2)
thay (2)(2) vào (1)(1) ta có: VA′.ABC=9a3208VA′.ABC=9a3208 (đvtt)
Cho tam giác ABC vuông tại A,trung tuyến AM,cho biết tam giác ABM là tam giác đều có độ dài cạnh \(\sqrt{3}\)
a.Tính độ dài AC và đyường cao AH của tam giác ABC
b.Tính diện tích tam giác ABC
Cho tam giác ABC vuông tại C có góc A bằng 60độ và trung tuyến \(BD=\frac{3}{4}a\). Tính diện tích tam giác ABC theo a.
Cho tam giác ABC vuông tại A có AD là phân giác của góc BAC (D€AC). Biết BD = 15cm. DC = 20cm a) Tinh độ dài đoạn AB và AC? b) Tính diện tích các tam giác ABD và ACD?
a: BC=BD+CD
=15+20
=35(cm)
Xét ΔABC có AD là phân giác
nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)
=>\(\dfrac{AB}{15}=\dfrac{AC}{20}\)
=>\(\dfrac{AB}{3}=\dfrac{AC}{4}=k\)
=>AB=3k; AC=4k
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(\left(3k\right)^2+\left(4k\right)^2=35^2\)
=>\(25k^2=1225\)
=>\(k^2=49\)
=>k=7
=>\(AB=3\cdot7=21\left(cm\right);AC=4\cdot7=28\left(cm\right)\)
b:
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot21\cdot28=294\left(cm^2\right)\)
\(\dfrac{BD}{BC}=\dfrac{15}{35}=\dfrac{3}{7}\)
=>\(S_{ABD}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot294=126\left(cm^2\right)\)
Ta có: \(S_{ABD}+S_{ACD}=S_{ABC}\)
=>\(S_{ACD}+126=294\)
=>\(S_{ACD}=168\left(cm^2\right)\)