tìm số nguyên n sao cho đa thức (x+m)(x-3)+7=(x+a)(x+b) với a,b thuộc R,a<=b
tìm số nguyên m sao cho đa thức (x+m)(x-3)+7 để khi phân tích ta được (x+a)(x+b) với a,b thuộc R,a bé hơn hoặc bằng b
Tìm số nguyên m sao cho đa thức (x + m)(x - 3) + 7 phân tích được thành (x + a)(x + b) với a, b ϵ Z và a ≤ b
Cho hai đa thức:
\(A(x) = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6\) và \(B(x) = - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4}\).
a) Tìm đa thức M(x) sao cho \(M(x) = A(x) + B(x)\).
b) Tìm đa thức C(x) sao cho \(A(x) = B(x) + C(x)\).
a) \(M(x) = A(x) + B(x) \\= 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4} \\=(4x^4-4x^4)+(-7x^3+7x^3)+(6x^2-5x^2)+(-5x+5x)+(-6+4)\\= {x^2} - 2.\)
b) \(A(x) = B(x) + C(x) \Rightarrow C(x) = A(x) - B(x)\)
\(\begin{array}{l}C(x) = A(x) - B(x)\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - ( - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4})\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 + 5{x^2} - 7{x^3} - 5x - 4 + 4{x^4}\\ =(4x^4+4x^4)+(-7x^3-7x^3)+(6x^2+5x^2)+(-5x-5x)+(-6-4)\\= 8{x^4} - 14{x^3} + 11{x^2} - 10x - 10\end{array}\)
Tìm số nguyên m sao cho đa thức ( x + m )( x - 2 ) + 56 = ( x + a )( x + b ) với a, b là các số nguyên và a ≤ b
Câu 1 : Cho đa thức f(x) =3x3 + ax2 +b ( a,b thuộc R )
Tìm a và b để f(2017)=f(-2017)=0
Câu 2 : Cho đa thức f(x)= mx3+ (m-2)x2 - (3n+5)x - 4n
Xác định m và n để đa thức f(x) chia hết cho (x+1) và ( x-3)
Câu 3 : Tìm số tự nhiên a sao cho đa thức : a2 +10a +1964 là số chính phương.
- Giúp với. Huhu '^'
1) Làm tính nhân: a) (3-2*x+4*x^2)*(1+x-2*x^2). b) (a^2+a*x+x^2)*(a^2-a*x+x^2)*(a-x). 2) Cho đa thức: A=19*x^2-11*x^3+9-20*x+2*x^4. B=1+x^2-4*x Tìm đa thức Q và R sao cho A=B*Q+R. 3) Dùng hằng đẳng thức để làm phép chia: a) (4*x^4+12*x^2*y^2+9*y^4):(2*x^2+3*y^2). b) ( 64*a^2*b^2-49*m^4*n^2):(8*a*b+7*m^2*n). c) (27*x^3-8*y^6):(3*x-2*y^2)
Bạn viết như vậy vẫn nhìn đc nhưng nhìn hơi khó
Thì các bạn vít ra giấy là hỉu nk mong giải giúp mk cái
Cho hai đa thức A(x) = 3(x2+2-4x)-2x(x-2)+17 và B(x) = 3x2-7x+3-3(x2-2x+4) a) Thu gọn A(x),B(x). Sắp xếp các đa thức theo luỹ thừa giảm dần của biến. Tìm hệ số cai nhất, hệ số tự do của hai đa thức đó b) Tìm N(x) sao cho N(x)-B(x)=A(x) và M(x) sao cho A(x)-M(x)=B(x).
`@` `\text {Ans}`
`\downarrow`
`a)`
`A(x) = \(3(x^2+2-4x)-2x(x-2)+17\)
`= 3x^2 + 6 - 12x - 2x^2 + 4x + 17`
`= x^2 - 8x + 23`
Hệ số cao nhất: `1`
Hệ số tự do: `23`
`B(x) = \(3x^2-7x+3-3(x^2-2x+4)\)
`=3x^2 - 7x + 3 - 3x^2 + 6x - 12`
`= -x - 9`
Hệ số cao nhất: `-1`
Hệ số tự do: `-9`
`b)`
`N(x) - B(x) = A(x)`
`=> N(x) = A(x) + B(x)`
`=> N(x) = (x^2 - 8x + 23)+(-x-9)`
`= x^2 - 8x + 23 - x - 9`
`= x^2 - 9x + 14`
`A(x) - M(x) = B(x)`
`=> M(x) = A(x) - B(x)`
`=> M(x) = (x^2 - 8x + 23) - (-x - 9)`
`= x^2 - 8x + 23 + x+9`
`= x^2 - 7x +32`
a)A(x) = 3(x^2 + 2 - 4x) - 2x(x - 2) + 17
= 3x^2 + 6 - 12x - 2x^2 + 4x + 17
= x^2 - 2x + 23
b)B(x) = 3x^2 - 7x + 3 - 3(x^2 - 2x + 4)
= 3x^2 - 7x + 3 - 3x^2 + 6x - 12
= -x + -9
A(x) = x^2 - 2x + 23
B(x) = -x - 9
Hệ số cao nhất của đa thức A(x) là 1, hệ số tự do của A(x) là 23.
Hệ số cao nhất của đa thức B(x) là -1, hệ số tự do của B(x) là -9.
b)
N(x) - B(x) = A(x)
N(x) - (-x - 9) = x^2 - 2x + 23
N(x) + x + 9 = x^2 - 2x + 23
N(x) = x^2 - 3x + 14
Vậy, N(x) = x^2 - 3x + 14.
A(x) - M(x) = B(x)
x^2 - 2x + 23 - M(x) = -x - 9
x^2 - 2x + x + 9 + 23 = M(x)
x^2 - x + 32 = M(x)
Vậy, M(x) = x^2 - x + 32.
a: A(x)=3x^2+6-12x-2x^2+4x+17
=x^2-8x+23
B(x)=3x^2-7x+3-3x^2+6x-12=-x-9
Hệ số cao nhất của A(x) là 1
Hệ số tự do của A(x) là 23
Hệ số cao nhất của B(x) là -1
Hệ số tự do của B(x) là -9
b: N(x)=A(x)+B(x)
=x^2-8x+23-x-9
=x^2-9x+14
M(x)=A(x)-B(x)
=x^2-8x+23+x+9
=x^2-7x+32
Cho hai đa thức A(x) = 5x4 + 4x3 + 2x + 1 và B(x) = –5x4 + x3 + 3x2 + x – 1. a) Tìm đa thức M(x) sao cho M(x) - A(x) = B(x). b) Tìm đa thức N(x) sao cho N(x) = A(x) – B(x).
a: M(x)=5x^4+4x^3+2x+1-5x^4+x^3+3x^2+x-1
=5x^3+3x^2+3x
b: N(x)=5x^4+4x^3+2x+1+5x^4-x^3-3x^2-x+1
=10x^4+3x^3-3x^2+x+2
`@` `\text {dnammv}`
` \text {M(x)-A(x)=B(x)}`
`-> \text {M(x)=A(x)+B(x)}`
`-> M(x)=(5x^4 + 4x^3 + 2x + 1)+(-5x^4 + x^3 + 3x^2 + x - 1)`
`= 5x^4 + 4x^3 + 2x + 1-5x^4 + x^3 + 3x^2 + x - 1`
`= (5x^4-5x^4)+(4x^3+x^3)+3x^2+(2x+x)+(1-1)`
`= 5x^3+3x^2+3x`
`b,`
`\text {N(x)=A(x)-B(x)}`
`N(x)=(5x^4 + 4x^3 + 2x + 1)-(-5x^4 + x^3 + 3x^2 + x - 1)`
`= 5x^4 + 4x^3 + 2x + 1+5x^4 - x^3 - 3x^2 - x + 1`
`= (5x^4+5x^4)+(4x^3-x^3)-3x^2+(2x-x)+(1+1)`
`= 10x^4+3x^3-3x^2+x+2`
Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IK
Bài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EF
Bài 1:
1) Tính nhanh:
d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 )
2)Rút gọn và tính giá trị của biểu thức:
b) (x-2)^3-(x-2)(x^2+2x+4)+6(x-2)(x+2)-x(x-1) tại x= 101
c) (x+1)^3-(x+3)(x^2-3x+9)+3(2x-1)^2 tại x= -2
Bài 11: Xác định đa thức f(x) biết f(x) chia hết cho (x-2) dư 5, f(x) chia cho (x-3) dư 7, f(x) chia cho (x-3)(x-2) được thương x^2-1 và có dư
Bài 12: Tìm x tự nhiên sao cho:
a) Giá trị biểu thức x^3+2x-x^2+7 chia hết cho giá trị biểu thức (x^2+1)
b) Giá trị đa thức ( 2x^4-3x^3-x^2+5x-4) chia hết cho giá trị đa thức (x-3)
Bài 13: Tìm x thuộc Z để giá trị biểu thức 8x^2-4x+1 chia hết cho giá trị biểu thức 2x+1
Bài 14: Chứng minh rằng:
a) a^3-a chia hết cho 24a với a là số nguyên tố lớn hơn 3
b) n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc Z
c) n^3-13n chia hết cho 6 với mọi n thuộc Z
d) a^5-a chia hết cho 30 với mọi a thuộc Z