Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Loc Xuan
Xem chi tiết
Nguyễn Thiều Công Thành
13 tháng 9 2017 lúc 22:27

\(\Leftrightarrow\left(a+b\right)^2-2\left(ab+1\right)+\left(\frac{ab+1}{a+b}\right)^2=0\)

\(\Leftrightarrow\left(a+b-\frac{ab+1}{a+b}\right)^2=0\)

\(\Leftrightarrow ab+1=\left(a+b\right)^2\Rightarrow\sqrt{ab+1}=a+b\in Q\left(Q.E.D\right)\)

X Drake
Xem chi tiết
Pandora Ann
2 tháng 8 2017 lúc 9:32

\(M=\sqrt{\frac{\left(a^2+2020\right)\left(b^2+2020\right)}{c^2+2020}}\)

\(=\sqrt{\frac{\left(a^2+ab+bc+ac\right)\left(b^2+ab+bc+ac\right)}{c^2+ab+bc+ac}}\)

\(=\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)}{\left(c+a\right)\left(c+b\right)}}\)

\(=a+b\) là 1 số hữu tỉ

=> M là 1 số hữu tỉ (đpcm)

Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
phan thị minh anh
Xem chi tiết
Lương Ngọc Anh
10 tháng 6 2016 lúc 15:16

thay 1 bởi ab+bc+ca

ta có :Q=\(\sqrt{\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)}\)

ta thấy \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)

       \(b^2+ab+bc+ca=\left(b+c\right)\left(a+b\right)\)

        \(c^2+ab+bc+ca=\left(a+c\right)\left(b+c\right)\)

=> Q= \(\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\)=\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)là một số hữu tỉ vì a,c,b là các số hữu tỉ

Trần Ngọc Khánh
4 tháng 7 2016 lúc 15:04

Với ab + ac + bc = 1
Ta có :
a2+1=a2+ab+ac+bc=(a2+ab)+(ac+bc)

=a(a+b)+c(a+b)=(a+c)(a+b)

Tương tự, ta có:
b2+1=(b+a)(b+c) 
c2+1=(c+a)(c+b)

Do đó: 
(a2+1)(b2+1)(c2+1)=(a+c)(a+b)(b+c)(b+a)(c+a)(c+b)

=(a+b)2(a+c)2(b+c)2=|(a+b)(a+c)(b+c)|

Do a, b, c là số hữu tỷ, do đó :
|(a+b)(a+c)(b+c)| là số hữu tỷ. (đpcm)

Đinh Đức Hùng
Xem chi tiết
Đỗ Bảo Anh Thư
30 tháng 7 2018 lúc 9:54

Chúc bạn có 1 ngày vui vẻ!!!

Nguyễn thị khánh hòa
29 tháng 12 2018 lúc 10:16

\(\frac{ab+2}{a^0}\)biểu thức hữu tỉ :)))

Đặng Ngọc Quỳnh
23 tháng 11 2020 lúc 4:22

Đặt a+b=s và ab=p. Ta có : \(a^2+b^2+\left(\frac{ab+2}{a+b}\right)^2=4\Leftrightarrow\left(a+b\right)^2-2ab+\frac{\left(ab+2\right)^2}{\left(a+b\right)^2}=4\)

\(\Leftrightarrow s^2-2p+\frac{\left(p+2\right)^2}{s^2}=4\Leftrightarrow s^4-2ps^2+\left(p+2\right)^2=4s^2\)

\(\Leftrightarrow s^4-2s^2\left(p+2\right)+\left(p+2\right)^2=0\Leftrightarrow\left(s^2-p-2\right)^2=0\)

\(\Leftrightarrow s^2-p-2=0\Leftrightarrow p+2=s^2\Leftrightarrow ab+2=\left(a+b\right)^2\)

Vì a,b là số hữu tỉ nên ab+2 là bình phương của 1 biểu thức hữu tỉ

Khách vãng lai đã xóa
Nguyễn Tất Đạt
Xem chi tiết
Ngô Tuấn Huy
15 tháng 7 2018 lúc 12:03

thay 1 bởi \(ab+bc+ca\)

Ta có : \(\sqrt{\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)}\)

Ta thấy : \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)

              \(b^2+ab+bc+ca=\left(b+c\right)\left(a+b\right)\)

              \(c^2+ab+bc+ca=\left(a+c\right)\left(b+c\right)\)

\(\Rightarrow\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)Là một số hữu tỉ vì\(a;b;c\)là các số hữu tỉ