cho a.b là các số hữu tỉ thỏa mãn:\(^{^{a^2}+b^2+\left(\frac{a\cdot b+1}{a+b^2}\right)^2=2.}cmr:\sqrt{a\cdot b+1}\)cũng là số hữu tỉ
cho a,b,c là số hữu tỉ thỏa mãn ab+bc+ac=2020
c/m \(\sqrt{\frac{\left(a^2+2020\right)\cdot\left(b^2+2020\right)}{c^2+2020}}\)là số hữu tỉ
Cho a,b và c là các số hữu tỉ thỏa mãn ab + bc + ca = 1. Chứng minh:
\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\) là 1 số hữu tỉ ?
ぁリガとう !
Cho a,b,c là các số hữu tỉ thỏa mãn ab + bc + ca =1
CM : Q=\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\) là 1 số hữu tỉ
Cho a,b,c là ba số hữu tỉ thỏa mãn điều kiện : ab+bc+ca=1 . C/m \(P=\sqrt{\left(a^2+1\right).\left(b^2+1\right).\left(c^2+1\right)}\) có giá trị là 1 số hữu tỉ
Cho a,b,c là các số hữu tỉ t/m ab+bc+ca = 2023
CMR: A=\(\sqrt{a^2+2023\left(b^2+2023\right)\left(c^2+2023\right)}\) cùng là số hữu tỉ
1.Cho \(x^2+y^2=1\\ z^2+t^2=1\\ xz+yt=1\)
cmr \(\sqrt{\left(x^2+t^2\right)\left(y^2+z^2\right)\left(xy+zt\right)+1}\) là số tự nhiên
2.Cho \(A=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}}}\)với a,b là các số hữu tỉ khác 0
cmr A là số hữu tỉ
Làm vài đường cơ bản :)
B1: Tìm a,b nguyên thỏa mãn: \(\frac{5}{a+b\sqrt{2}}-\frac{4}{a-b\sqrt{2}}+18\sqrt{2}=3\)
B2: Cho a,b là các SHT thỏa mãn: \(\left(a^2+b^2-2\right)\left(a+b\right)^2+\left(1-ab\right)^2=-4ab\)
CM: \(\sqrt{1+ab}\) cũng là 1 số hữu tỉ
B3: Tìm m để phương trình vô nghiệm: \(\frac{2m-1}{x-2}=m-3\)
a) cho x=\(\sqrt[3]{20+14\sqrt{2}}\)+\(\sqrt[3]{20-13\sqrt{2}}\). tính gt biểu thức: A=(x5-x4-5x3-34x2+34x-41)2016
b) cho a,b là số hữu tỉ thỏa mãn a2+b2=4-\(\left(\frac{ab+2}{a+b}\right)^2\).cm \(\sqrt{ab+2}\)là số hữu tỉ
MK CẦN GẤP. THANKS