Tính nhanh
5/6x1/7-1/7x1/6
8/15:4/5x3/2
tính bằng hai cách 6/7x1/2+7/6x1/4
Mik có sửa lại đề
C1: \(\dfrac{6}{7}\times\dfrac{1}{2}+\dfrac{6}{7}\times\dfrac{1}{4}=\dfrac{3}{7}+\dfrac{3}{14}=\dfrac{6}{14}+\dfrac{3}{14}=\dfrac{9}{14}\)
C2:\(\dfrac{6}{7}\times\dfrac{1}{2}+\dfrac{6}{7}\times\dfrac{1}{4}=\dfrac{6}{7}\times\left(\dfrac{1}{2}+\dfrac{1}{4}\right)=\dfrac{6}{7}\times\left(\dfrac{2}{4}+\dfrac{1}{4}\right)=\dfrac{6}{7}\times\dfrac{3}{4}=\dfrac{9}{14}\)
1/2x1/3+1/3x1/4+1/4x1/5+1/5x1/6+1/6x1/7+1/7x1/8+1/8x1/9
1/2x1/3+1/3x1/4+1/4x1/5+1/5x1/6+1/6x1/7+1/7x1/8+1/8x1/9
=7/18
tính nhanh tìm A
A=1/2.1/3x1/4x1/5x1/6x1/7x1/8x.......x1/7943297
Tính bằng cách thuận tiện:
1 1/3x 1 1/4x1 1/5x1 1/6x1 1/7x1 1/8
\(1\frac{1}{3}.1\frac{1}{4}.1\frac{1}{5}.1\frac{1}{6}.1\frac{1}{7}.1\frac{1}{8}=\frac{4}{3}.\frac{5}{4}.\frac{6}{5}.\frac{7}{6}.\frac{8}{7}.\frac{9}{8}=\frac{9}{3}=3\)
Bài 1: Tính nhanh
5+52+53+......+598+599
Bài 2: Tìm x biết:
a. [12x - 4] x 82022= 4 x 82023
Bài 1 :
Gọi \(A=5+5^2+5^3+...+5^{98}+5^{99}\\ 5A=5^2+5^3+5^4+...+5^{99}+5^{100}\\ 5A-A=\left(5^2+5^3+5^4+...+5^{99}+5^{100}\right)-\left(5+5^2+5^3+...+5^{98}+5^{99}\right)\\ 4A=5^{100}-5\\ A=\dfrac{5^{100}-5}{4}\)
Bài 2:
\(\left(12x-4\right)\cdot8^{2022}=4\cdot8^{2023}\\ 12x-4=4\cdot8^{2023}:8^{2022}\\ 12x-4=4\cdot8\\ 12x-4=32\\ 12x=36\\ x=3\)
1/7x1/7-3/7x1/7-3/8+1/3 tính kiểu gì cũng được
4/3x1/7+4/7x1/11+4/11x1/15+4/15x1/19=?
1/7x1/2:1/7= 1/7x1/2x....=....?
tính nhanh 3/7x1/5+2/3x3/7-3/7x1/8 giúp mình với mình đang cần gấp
\(=\dfrac{3}{7}\times\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{1}{8}\right)\\ =\dfrac{3}{7}\times\left(\dfrac{24}{5\times24}+\dfrac{2\times40}{3\times40}-\dfrac{15}{8\times15}\right)\\ =\dfrac{3}{7}\times\left(\dfrac{24+80-15}{120}\right)\\ =\dfrac{3}{7}\times\dfrac{89}{120}\\ =\dfrac{89}{280}\)
\(\dfrac{3}{7}\times\dfrac{1}{5}+\dfrac{2}{3}\times\dfrac{3}{7}-\dfrac{3}{7}\times\dfrac{1}{8}\)
\(=\dfrac{3}{7}\times\left(\dfrac{1}{5}+\dfrac{3}{7}-\dfrac{1}{8}\right)\)
\(=\dfrac{3}{7}\times\dfrac{56+120-35}{280}\)
\(=\dfrac{3}{7}\times\dfrac{141}{280}\)
\(=\dfrac{423}{1960}\)