2x-y-4=0
3x-2y=-5
giải/hệ/phương/trình:x^2-xy-2y^2=0
3x+y=1
\(\left\{{}\begin{matrix}x^2-xy-2y^2=0\\3x+y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x\left(1-3x\right)-2\left(1-3x\right)^2=0\\y=1-3x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-14x^2+11x-2=0\\y=1-3x\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{2}{7}\end{matrix}\right.\\y=1-3x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{2}{7}\\y=\dfrac{1}{7}\end{matrix}\right.\end{matrix}\right.\)
Vậy...
Giải pt
(4x-3)^2-(2x+1)^2=0
3x-12-5x×(x-4)=0
(8x+2)×(x^2+5)×(x^2-4)=0
(4x - 3)2 - (2x + 1)2 = 0
\(\Leftrightarrow\) (4x - 3 - 2x - 1)(4x - 3 + 2x + 1) = 0
\(\Leftrightarrow\) (2x - 4)(6x - 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=4\\6x=2\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
3x - 12 - 5x(x - 4) = 0
\(\Leftrightarrow\) 3x - 12 - 5x2 + 20x = 0
\(\Leftrightarrow\) -5x2 + 23x - 12 = 0
\(\Leftrightarrow\) 5x2 - 23x + 12 = 0
\(\Leftrightarrow\) 5x2 - 20x - 3x + 12 = 0
\(\Leftrightarrow\) 5x(x - 4) - 3(x - 4) = 0
\(\Leftrightarrow\) (x - 4)(5x - 3) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-4=0\\5x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=4\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy ...
(8x + 2)(x2 + 5)(x2 - 4) = 0
\(\Leftrightarrow\) (8x + 2)(x2 + 5)(x - 2)(x + 2) = 0
Vì x2 \(\ge\) 0 \(\forall\) x nên x2 + 5 > 0 \(\forall\) x
\(\Rightarrow\) (8x + 2)(x - 2)(x + 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}8x+2=0\\x-2=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=2\\x=-2\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt!
a) Ta có: \(\left(4x-3\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(4x-3-2x-1\right)\left(4x-3+2x+1\right)=0\)
\(\Leftrightarrow\left(2x-4\right)\left(6x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\6x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{2;\dfrac{1}{3}\right\}\)
b) Ta có: \(3x-12-5x\left(x-4\right)=0\)
\(\Leftrightarrow3\left(x-4\right)-5x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3-5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy: \(S=\left\{4;\dfrac{3}{5}\right\}\)
c) Ta có: \(\left(8x+2\right)\left(x^2+5\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow2\left(4x+1\right)\left(x^2+5\right)\left(x-2\right)\left(x+2\right)=0\)
mà \(2>0\)
và \(x^2+5>0\forall x\)
nên \(\left(4x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-1\\x=2\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=2\\x=-2\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{4};2;-2\right\}\)
Hệ phương trình:
2 x + y = 0 3 x + 4 y = - 1
A. Vô nghiệm
B. Vô số nghiệm
C. Có nghiệm duy nhất
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^5=x^4-2x^2y+2\\y^5=y^4-2y^2z+2\\z^5=z^4-2z^2x+2\end{matrix}\right.\)
giải các hệ phương trình:
1, 2x+3|y-1|=5 và 3x+2y=7
2, |x+1|+|y-1|=5 và |x+1|-4y+4=0
3, (2x+1)/4-(y-3)/3=1/12 và (x+5)/2=(y+7)/3 -4
4, 1/x+1/y=1/12 và 8/x+15/y=1
5, 2/(x+2y) +1/(y+2x)=3 và 4/(x+2y) -3/(y+2x)=1
(4x^5 y^4+2x^2y^3-6x^3y^2):2x^2y^2
1)1/x+2y +1/y+2x=3
4/x+2y - 3/y+2x=9
2)3x/x+1 -2/y+4=4
2x/x+1 -5/y+4=9
bài 5 đa thức N thỏa mãn điều kiện
a) (3x^5-4x^4+6x^3)=(-2x^2).N b) N.(-1/3x^2y^3)=6x^4y^5-3x^3y^4+1/2x^4y^3z c) x^3-3x^2y+3xy^2-y^3=N.(y-x) d) x^4-2x^2y^2+y^4=(y^2-x^2).N
a: \(N=\dfrac{3x^5-4x^4+6x^3}{-2x^2}=-\dfrac{3}{2}x^3+2x^2-3x\)
b: \(N=\dfrac{\left(6x^4y^5-3x^3y^4+\dfrac{1}{2}x^4y^3z\right)}{-\dfrac{1}{3}x^2y^3}=-18x^2y^2+9xy-\dfrac{3}{2}x^2z\)
c: \(\Leftrightarrow N\cdot\left(y-x\right)=\left(x-y\right)^3\)
\(\Leftrightarrow N=\dfrac{\left(x-y\right)^3}{y-x}=-\left(y-x\right)^2\)
d: \(\Leftrightarrow N\cdot\left(y^2-x^2\right)=\left(y^2-x^2\right)^2\)
hay \(N=y^2-x^2\)