Chứng minh không có số nguyên n thỏa mãn \(\left(2014^{2014}+1\right)\)chia hết cho \(n^3+2012n\)
Chứng minh không tồn tại n thuộc N* thỏa mãn 2014^2014+1 chia hết cho n^3+2012n
chứng minh rằng không tồn tại số tụ nhiên n thỏa mãn 20142014+1 chia hết cho n3=2012n
chứng minh rằng không tồn tại n là số tự nhiên thỏa mãn 2014^2014+1 chia hết cho n^2+2012n
Chứng minh rằng không tồn tại số nguyên n thỏa mãn : \(\left(2014^{2014}+1\right)\)chia hết cho n3+2012n
\(n^3+2012n=n\left(n^2+2012\right)\)
- Nếu \(n=3k\Rightarrow\left(n^3+2012n\right)⋮3\)
- Nếu \(n=3k+1\Rightarrow n^2+2012=9k^2+6k+2013⋮3\)
\(\Rightarrow\left(n^3+2012n\right)⋮3\)
- Nếu \(n=3k+2\Rightarrow n^2+2012=9k^2+12k+2016⋮3\)
\(\Rightarrow\left(n^3+2012n\right)⋮3\)
\(\Rightarrow\left(n^3+2012n\right)⋮3\) \(\forall n\in Z\) (1)
Mặt khác ta có:
\(2014\equiv1\left(mod3\right)\Rightarrow2014^{2014}\equiv1\left(mod3\right)\)
\(\Rightarrow2014^{2014}+1\equiv2\left(mod3\right)\Rightarrow\left(2014^{2014}+1\right)⋮̸3\) (2)
Từ (1) và (2) suy ra điều phải chứng minh
1.CMR trong tất cả các số có 4 chữ số khác nhau được lập bởi các chữ số 1;2;3;4 không có 2 số nào mà 1 số chia hết cho 2 số còn lại
2.CMR (n-1).(n+2)+12 không chia hết cho 9 với mọi n thuộc N
3.CMR không tồn tại n thuộc N thỏa mãn 20142014+1 chia hết cho n3+2012n
Chứng minh rằng : ko tồn tại STN n để 2014^2014+1 chia hết cho n^3 + 2012n
Tìm số nguyên n thỏa mãn n3+2012n=20142015
Câu 1:
a, Giả sử n là số tự nhiên thỏa mãn điều kiện n(n+1) +6 không chia hết cho 3. Chứng minh rằng 2n^2+n+8 không là số chính phương
b, cho 4 số dương a;b;c;d thỏa mãn điều kiện a^4/b + c^4/d = 1/(b+d) và a^2 + c^2 =1 . Chứng minh rằng (a^2014)/(b^1007) + ( c^ 2014)/(d^1007) = 2/( b+d)^1007
.Mọi người giải giúp Linh nha ^^ Linh đang cần gấp ạ!
Cho đa thức P(x) thỏa mãn: \(P\left(x^{2014}\right)⋮x-1\). Chứng minh: \(P\left(x^{2014}\right)⋮x^{2014}-1\)