\(n^3+2012n=n\left(n^2+2012\right)\)
- Nếu \(n=3k\Rightarrow\left(n^3+2012n\right)⋮3\)
- Nếu \(n=3k+1\Rightarrow n^2+2012=9k^2+6k+2013⋮3\)
\(\Rightarrow\left(n^3+2012n\right)⋮3\)
- Nếu \(n=3k+2\Rightarrow n^2+2012=9k^2+12k+2016⋮3\)
\(\Rightarrow\left(n^3+2012n\right)⋮3\)
\(\Rightarrow\left(n^3+2012n\right)⋮3\) \(\forall n\in Z\) (1)
Mặt khác ta có:
\(2014\equiv1\left(mod3\right)\Rightarrow2014^{2014}\equiv1\left(mod3\right)\)
\(\Rightarrow2014^{2014}+1\equiv2\left(mod3\right)\Rightarrow\left(2014^{2014}+1\right)⋮̸3\) (2)
Từ (1) và (2) suy ra điều phải chứng minh