p và p+4 là số nguyên tố lớn hơn 3 chứng tổ rằng p+8 là hợp số
help me
cho p là số nguyên tố [p>3] và 2p+1 cũng là số nguyên tố hỏi 4p+1laf số nguyên tố hay hợp số
help me oooooo
Do p là số nguyên tố lớn hơn 3 nên p có dạng 3k + 1 hoặc 3k + 2 \((k\in\mathbb{N})\).
+) Nếu p = 3k + 1 thì 2p + 1 = 2(3k + 1) + 1 = 6k + 3 = 3(2k + 1) chia hết cho 3. Mà 2p + 1 > 3 nên 2p + 1 là hợp số (vô lí).
+) Nếu p = 3k + 2 thì 4p + 1 = 4(3k + 2) + 1 = 12k + 9 = 3(4k + 3) chia hết cho 3. Mà 4p + 1 > 3 nên 4p + 1 là hợp số.
Vậy 4p + 1 là hợp số.
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số
b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số
c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
help me!!!!!!!!!!!!
a)
p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số
b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số
c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
a )
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
nhé !
.........
còn câu b ,c chưa nghĩ ra
Mình làm phần b hộ cho
vì p là số nguyên tố >3 => p có dạng 3k+1 hoặc 3k+2(k thuộc Z)
Vì p+4 cũng là số nguyên tố nên p#3k+2 vì nếu p=3k+2 thì p+4= 3k+2+4=3k+6 (là hợp số)
=> p=3k+1
Vậy p+8=3k+1+8=3k+9 (là hợp số)
k mình nha, ai k trả lời bên dưới mình sẽ k lại.
1. Tìm số nguyên tố p , sao cho các số sau cũng là số nguyên tố :
a,p+2 và p+10
b,p+10 và p+20
2.Cho 3 số nguyên tố lớn hơn 3 , trong đó số sau lớn hơn số trước là d đơn vị . Chứng minh rằng d chia hết cho 6.
3.Cho p và p+4 là các số nguyên tố (p>3) . Chứng minh ằng p+8 là hợp số
4.Cho p và 8p-1 là các số nguyên tố . Chứng minh rằng 8p+1 là hợp số
Câu 1:
a: p=3 thì 3+2=5 và 3+10=13(nhận)
p=3k+1 thì p+2=3k+3(loại)
p=3k+2 thì p+10=3k+12(loại)
b: p=3 thì p+10=13 và p+20=23(nhận)
p=3k+1 thì p+20=3k+21(loại)
p=3k+2 thì p+10=3k+12(loại)
2.
p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6
Cho p và p+ 4 là các số nguyên tố lớn hơn 3. Chứng minh rằng p+8 là hợp số
p thuộc 1 trong 3 trường hợp:p=3k
p=3k+1
p=3k+2
Vì p là số nguyên tố lớn hơn 3=>p ko bằng 3k
=> p thuộc 1 trong 2 trường hợp:p=3k+1
p=3k+2
Nếu p=3k+2=>p+4=3k+2+4
=3k+6
Vì 3kchia hết cho 3;6 chia hết cho 3
=>p ko thể bằng 3k+2
=>p=3k+1
Với p=3k+1=>p+8=3k+1+8
=3k+9
Vì 3k chia hết cho 3;9 chia hết cho 3
=> p+8 là hợp số.
Cho p và p+4 là các số nguyên tố lớn hơn 3. Chứng minh rằng: p+8 là hợp số.
cho p là số nguyên tố lớn hơn 2 . chứng minh 3p + 5 là hợp số
cho p là số nguyên tố lớn hơn 2. chứng minh 5p + 3 là hợp số
cho p là số nguyên tố lớn hơn 2 . chưng mih 7p + 5 là hợp số
cho p và p + 4 là các số nguyên tố lớn hơn 3 nhân p+ 8 là hợp số
Cho P và P+4 là số nguyên tố ,P lớn hơn 3.Chứng minh rằng P+8 là hợp số
Giúp mk nhak...Mk sắp thi rồi...Ai trả lời đúng mk tick cho !!!
1. (Dạng số nguyên tố,hợp số)
a.Tìm số nguyên tố p để : p+10 và p+14 đều là các số nguyên tố
b.Với p,q là các số nguyên tố bé hơn 5,chứng minh rằng :
p4 và q4 chia hết cho 240.
c.Cho p và p+4 là các số nguyên tố (p lớn hơn 3).Chứng minh p + 8 là hợp số.
HELP ME !!!
Đoạn p,q là p mũ 4 và q mũ 4 nha
em mớ lớp 5 nên không biết
a)Xét p=2
=>p+10 = 12 (loại0
p=3 =>p+10 và p+14 đều là số nguyên tố.nếu p>3 =>p=3k+1 , p=3k+2
TH1:p = 3k+1 =>p+14=3k+1+14=3k+15(loại)
TH2:p=3k+2=>p+10=3k+2+10=3k+12(loại)
=>p=3
cho P và P+4 là các số nguyên tố biết P lớn hơn 3 chứng minh rằng P+8 là hợp số
:Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1.
Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Câu 1:Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Câu 2: chắc có vấn đề ... đã nguyên tố còn chia hết cho 6
Câu 3: 3 là số nguyên tố thỏa mãn yêu cầu bài toán, ta cần c/m với các số nguyên tố p> 3 không có số nào thỏa mãn yêu cầu:
số p có dạng 3k+1 hoặc 3k+2 (nếu có dạng 3k sẽ chia hết cho 3)
Nếu p có dạng 3k + 1 thì p+2 chia hết cho 3 nên không thỏa mãn
Nếu p có dạng 3k+2 thì p+10 chia hết cho 3 nên không thỏa mãn
Vậy chỉ có 3 là thỏa mãn yêu cầu