Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Trần Minh Hoàng
31 tháng 1 2021 lúc 9:15

Do p là số nguyên tố lớn hơn 3 nên p có dạng 3k + 1 hoặc 3k + 2 \((k\in\mathbb{N})\).

+) Nếu p = 3k + 1 thì 2p + 1 = 2(3k + 1) + 1 = 6k + 3 = 3(2k + 1) chia hết cho 3. Mà 2p + 1 > 3 nên 2p + 1 là hợp số (vô lí).

+) Nếu p = 3k + 2 thì 4p + 1 = 4(3k + 2) + 1 = 12k + 9 = 3(4k + 3) chia hết cho 3. Mà 4p + 1 > 3 nên 4p + 1 là hợp số.

Vậy 4p + 1 là hợp số.

Nguyễn Đăng Khoa
Xem chi tiết
VRCT_Ran Love Shinichi
22 tháng 10 2016 lúc 20:21

a)

p và 2p+1 nguyên tố 
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố 
* xét p # 3 
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3 
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3) 
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3 

kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

Băng Dii~
22 tháng 10 2016 lúc 20:26

cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số 

b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số

c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số

a )

* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố 
* xét p # 3 
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3 
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3) 
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3 

kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

nhé !

.........

còn câu b ,c chưa nghĩ ra

Nguyễn Hà Lâm
8 tháng 3 2019 lúc 21:04

Mình làm phần b hộ cho

vì p là số nguyên tố >3 => p có dạng 3k+1 hoặc 3k+2(k thuộc Z)

Vì p+4 cũng là số nguyên tố nên p#3k+2 vì nếu p=3k+2 thì p+4= 3k+2+4=3k+6 (là hợp số)

=> p=3k+1

Vậy p+8=3k+1+8=3k+9 (là hợp số)

k mình nha, ai k trả lời bên dưới mình sẽ k lại.

Phạm Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 2 2022 lúc 11:56

Câu 1: 

a: p=3 thì 3+2=5 và 3+10=13(nhận)

p=3k+1 thì p+2=3k+3(loại)

p=3k+2 thì p+10=3k+12(loại)

b: p=3 thì p+10=13 và p+20=23(nhận)

p=3k+1 thì p+20=3k+21(loại)

p=3k+2 thì p+10=3k+12(loại)

2.

p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

Ruby Sweety
Xem chi tiết
Công Tùng
25 tháng 11 2017 lúc 20:20

p thuộc 1 trong 3 trường hợp:p=3k

                                           p=3k+1

                                           p=3k+2

Vì p là số nguyên tố lớn hơn 3=>p ko bằng 3k

=> p thuộc 1 trong 2 trường hợp:p=3k+1

                                                p=3k+2

Nếu p=3k+2=>p+4=3k+2+4

                            =3k+6

 Vì 3kchia hết cho 3;6 chia hết cho 3

=>p ko thể bằng 3k+2

=>p=3k+1

Với p=3k+1=>p+8=3k+1+8

                 =3k+9

Vì 3k chia hết cho 3;9 chia hết cho 3

=> p+8 là hợp số.

Tạ Kim Chi
Xem chi tiết
Ngô Quốc Anh
Xem chi tiết
TẠ VĂN MINH
Xem chi tiết
Trương Tố Nhi
Xem chi tiết
Trương Tố Nhi
30 tháng 12 2019 lúc 12:14

Đoạn p,q là p mũ 4 và q mũ 4 nha
 

Khách vãng lai đã xóa
Monkey D Luffy
30 tháng 12 2019 lúc 12:52

em mớ lớp 5 nên không biết

Khách vãng lai đã xóa
nguyễn thành sơn
2 tháng 1 2020 lúc 19:48

a)Xét p=2

=>p+10 = 12 (loại0

p=3 =>p+10 và p+14 đều là số nguyên tố.nếu p>3 =>p=3k+1 , p=3k+2

TH1:p = 3k+1 =>p+14=3k+1+14=3k+15(loại)

TH2:p=3k+2=>p+10=3k+2+10=3k+12(loại)

=>p=3

Khách vãng lai đã xóa
Kudo Shinichi
Xem chi tiết
Zeref Dragneel
25 tháng 11 2015 lúc 20:31

:Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1.

Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 

Thanh Hiền
25 tháng 11 2015 lúc 20:32

  Câu 1:Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 
Câu 2: chắc có vấn đề ... đã nguyên tố còn chia hết cho 6 
Câu 3: 3 là số nguyên tố thỏa mãn yêu cầu bài toán, ta cần c/m với các số nguyên tố p> 3 không có số nào thỏa mãn yêu cầu: 
số p có dạng 3k+1 hoặc 3k+2 (nếu có dạng 3k sẽ chia hết cho 3) 
Nếu p có dạng 3k + 1 thì p+2 chia hết cho 3 nên không thỏa mãn 
Nếu p có dạng 3k+2 thì p+10 chia hết cho 3 nên không thỏa mãn 
Vậy chỉ có 3 là thỏa mãn yêu cầu