Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phác Xán Liệt
Xem chi tiết
Trần Quang Hưng
16 tháng 11 2016 lúc 20:46

Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a.b}{c.d}\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau tao có

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\)

Từ (1) và (2) ta có ĐPCM

dream XD
Xem chi tiết
Trên con đường thành côn...
9 tháng 8 2021 lúc 16:50

undefined

Bí Mật
Xem chi tiết
Lê Hào 7A4
Xem chi tiết
Lê Hào 7A4
1 tháng 3 2022 lúc 22:20

giúp mình với

Gia Nhi Nguyễn Lê
1 tháng 3 2022 lúc 22:23

Đặt ab=cd=k

 

Khi đó ta có :

a=bk và c=dk

Suy ra :

a2-b2c2-d2=(bk)2-b2(dk)2-d2

=b2k2-b2d2k2-d2

=b2.(k2-1)d2.(k2-1)

=b2d2(1)

Ta lại có :

Gia Nhi Nguyễn Lê
1 tháng 3 2022 lúc 22:23

 

Đặt ab=cd=k

Khi đó ta có :

a=bk và c=dk

Suy ra :

a2-b2c2-d2=(bk)2-b2(dk)2-d2

=b2k2-b2d2k2-d2

=b2.(k2-1)d2.(k2-1)

=b2d2(1)

Ta lại có :

thanh nguyen
Xem chi tiết
Akai Haruma
22 tháng 9 2021 lúc 18:56

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Ta có:

$\frac{ab}{cd}=\frac{b^2t}{d^2t}=\frac{b^2}{d^2}(1)$

Mặt khác:

$\frac{(a-b)^2}{(c-d)^2}=\frac{(bt-b)^2}{(dt-d)^2}=\frac{b^2(t-1)^2}{d^2(t-1)^2}=\frac{b^2}{d^2}(2)$

Từ $(1); (2)\Rightarrow \frac{ab}{cd}=\frac{(a-b)^2}{(c-d)^2}$

Nguyễn Trọng Long
Xem chi tiết
Lê Thu Trang
Xem chi tiết
Ichigo
Xem chi tiết
Nguyễn Anh Duy
24 tháng 10 2016 lúc 14:39

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) thì \(a=bk,c=dk\).

\(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\\ \frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\)

Do đó: \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

Wang Jum Kai
Xem chi tiết
Hồ Thu Giang
24 tháng 11 2015 lúc 18:58

\(\frac{a}{b}=\frac{c}{d}\)

=> \(\frac{a}{c}=\frac{b}{d}\)

=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)(Đpcm)