1+1+5-3=.....
1+1+1+1+1+1+1+1+1+1+1+1+1+3+3+3+3+3+3+5+5+5+5+5+5+5+12547895+5547854-200
a)(5+1/5-2/9)-(2-1/23-3/35+5/6)-(8+2/7-1/18)
b) 1/3-3/4(-3/5+1/64- -2/9-1/36+1/15
c) -5/7-(-5/67)+13/10+1/2+(-1/6)+1 3/14-(-2/5)
d)3/5:(-1/15-1/6)+3/5:(-1/3-1 1/15)
>, <, = ?
4 + 1 … 4 | 5 – 1 … 5 | 3 + 0 … 3 |
4 + 1 … 5 | 5 – 0 … 5 | 3 + 1 … 4 |
4 – 1 … 4 | 3 + 1 … 3 | 3 + 1 … 5 |
Lời giải chi tiết:
4 + 1 > 4 | 5 – 1 < 5 | 3 + 0 = 3 |
4 + 1 = 5 | 5 – 0 = 5 | 3 + 1 = 4 |
4 – 1 < 4 | 3 + 1 > 3 | 3 + 1 < 5 |
Dễ nhỉ !
Ai đồng tình thì cho mình nha !
4 + 1 > 4 | 5 – 1 < 5 | 3 + 0 = 3 |
4 + 1 = 5 | 5 – 0 = 5 | 3 + 1 = 4 |
4 – 1 < 4 | 3 + 1 > 3 | 3 + 1 < 5 |
a,1/3 .(x-2/5)=3/4 b, 7/3:(x-2/3)=4/5 c,1/3.(x-2/5)=4/5 d, 2/3.(x-1/2)-1/4.(x-2/5)=7/3 e,3/7 .(x-2/3)+1/2=5/4.(x-2) f,1/2.(x-3)+1/3.(x-4)+1/4.(x-5)=1/5 g,[2/3.(x-1/2)-4/5]:(x-1/3)=21/5 h, {x-[1/2.(x-3)+11/5]}:(x-1/2)=3/5 i,x.(x-2/5)-(x+2).x+11/4=4/3
a: =>x-2/5=3/4:1/3=3/4*3=9/4
=>x=9/4+2/5=45/20+8/20=53/20
b: =>x-2/3=7/3:4/5=7/3*5/4=35/12
=>x=35/12+2/3=43/12
c: 1/3(x-2/5)=4/5
=>x-2/5=4/5*3=12/5
=>x=12/5+2/5=14/5
d: =>2/3x-1/3-1/4x+1/10=7/3
=>5/12x-7/30=7/3
=>5/12x=7/3+7/30=77/30
=>x=77/30:5/12=154/25
e: \(\Leftrightarrow x\cdot\dfrac{3}{7}-\dfrac{2}{7}+\dfrac{1}{2}-\dfrac{5}{4}x+\dfrac{5}{2}=0\)
=>\(x\cdot\dfrac{-23}{28}=\dfrac{2}{7}-3=\dfrac{-19}{7}\)
=>x=19/7:23/28=76/23
f: =>1/2x-3/2+1/3x-4/3+1/4x-5/4=1/5
=>13/12x=1/5+3/2+4/3+5/4=257/60
=>x=257/65
i: =>x^2-2/5x-x^2-2x+11/4=4/3
=>-12/5x=4/3-11/4=-17/12
=>x=17/12:12/5=85/144
bài 1:
1/4 + 2/3 2/7 + 2/3 2/5 + 1/3 2/3 + 1/2 1/3 + 3/5 4/5 + 1/3
1/8 + 3/4 1/36 + 5/12 1/3 + 1/6 + 1/18.
bài 2:
15/16 - 3/16 17/18 - 5/6 3/4 - 4/9 1/2 - 2/5 5/6 - 3/10 3-1/3
4/5 - 1/10 5/2 - 1 5/8 - 2/5.
Tính:
1) \(\dfrac{1}{1+\sqrt{5}}+\dfrac{1}{\sqrt{5}-1}\)
2) \(\dfrac{1}{\sqrt{5}+\sqrt{3}}-\dfrac{1}{\sqrt{5}-\sqrt{3}}\)
3) \(\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}+\sqrt{2}}\)
4) \(\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{\sqrt{5}-3}\)
5) \(\dfrac{1}{\sqrt{2}-\sqrt{6}}-\dfrac{1}{\sqrt{6}+\sqrt{2}}\)
LM CHI TIẾT GIÚP MK NHÉ
4: Ta có: \(\dfrac{1}{3+\sqrt{5}}-\dfrac{1}{3-\sqrt{5}}\)
\(=\dfrac{3-\sqrt{5}-3-\sqrt{5}}{4}\)
\(=\dfrac{-\sqrt{5}}{2}\)
2/5+2/3+3/4
2/6+3/12
5/6+1/3
1/3+5/12+5/6
5/8+4/7
1/5+5/35
5/8+3/4
1/6+1/3+1/12
1/6+5/24+2/3
7/3+8/7
2/5+1/6
1/7+1/4+6/7+3/4
giúp với
và ai giải được gọi cụ
\(\dfrac{2}{5}+\dfrac{2}{3}+\dfrac{2}{4}\)
= \(\dfrac{24}{60}\) + \(\dfrac{40}{60}\) + \(\dfrac{30}{60}\)
= \(\dfrac{64}{60}\) + \(\dfrac{30}{60}\)
= \(\dfrac{47}{30}\)
\(\dfrac{2}{6}+\dfrac{3}{12}\)
= \(\dfrac{4}{12}\) + \(\dfrac{3}{12}\)
= \(\dfrac{7}{12}\)
\(\dfrac{5}{6}\) + \(\dfrac{1}{3}\)
= \(\dfrac{5}{6}\) + \(\dfrac{2}{6}\)
= \(\dfrac{7}{6}\)
9/10
17/36
7/6
19/12
67/56
12/35
11/8
7/12
25/24
73/21
17/30
2
ok chưa bạn!
\(\dfrac{1}{3}\) + \(\dfrac{5}{12}\) + \(\dfrac{5}{6}\)
= \(\dfrac{4}{12}\) + \(\dfrac{5}{12}\) + \(\dfrac{10}{12}\)
= \(\dfrac{9}{12}\) + \(\dfrac{10}{12}\)
= \(\dfrac{19}{12}\)
\(\dfrac{5}{8}\) + \(\dfrac{4}{7}\)
= \(\dfrac{35}{56}\) + \(\dfrac{32}{56}\)
= \(\dfrac{67}{56}\)
\(\dfrac{7}{3}\) + \(\dfrac{8}{7}\)
= \(\dfrac{49}{21}\) + \(\dfrac{24}{21}\)
= \(\dfrac{73}{21}\)
\(\dfrac{1}{5}+\dfrac{5}{35}\)
= \(\dfrac{7}{35}\) + \(\dfrac{5}{35}\)
= \(\dfrac{12}{35}\)
Bài 1
a, Tính P=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+....+1/2012(1+2+3+...+2012)
b,Tìm x thỏa mãn 4^5+4^5+4^5+4^5/3^5+3^5+3^5.6^5+6^5+6^5+6^5+6^5+6^5/2^5+2^5=2^x
Kho..................wa.....................troi.....................thi......................lanh.................ret.......................ai........................tich..........................ung.....................ho........................minh.....................cho....................do....................lanh
Kho..................wa.....................troi.....................thi......................lanh.................ret.......................ai........................tich..........................ung.....................ho........................minh.....................cho....................do....................lanh
a,1/1*2+1/2*3+1/3*4+1/4*5+......+1/9*10
b,2/1*3+2/3*5+2/5*7+2/7*9+2/9*11
c,3/1*3+3/3*5+3/5*7+3/7*9+3/9*11
d,5/1*3+5/3*5+5/5*7+5/7*9+5/9*11
Giúp mình với
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{3}{4}+...+\frac{1}{9}-\frac{1}{10}\)
= \(1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)
= \(1-\frac{1}{10}\)
=\(\frac{9}{10}\)
b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
=\(1-\frac{1}{11}\)
= \(\frac{10}{11}\)
c) đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}\)
\(\frac{1}{3}A\)=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{2}{3}A\)=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\frac{2}{3}A\)=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(\frac{10}{11}\)
A= \(\frac{10}{11}:\frac{2}{3}\)
A= \(\frac{10}{11}.\frac{3}{2}\)=\(\frac{15}{11}\)
d) giả tương tự câu c kết quả \(\frac{25}{11}\)
tổng đặc biệt đó bạn
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(1-\frac{1}{10}=\frac{9}{10}\)
những câu sau cũng áp dụng như vậy nhé
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}\)
\(=\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{3}{2}.\left(1-\frac{1}{11}\right)=\frac{3}{2}.\frac{10}{11}=\frac{15}{11}\)
A= 1/1+3+5 + 1/1+3+5 + 1/1+3+5+7 +...+ 1/1+3+5+7+...2021
mà A=3/4
GIÚP MÌNH VỚI
A = \(\dfrac{1}{1+3}\) + \(\dfrac{1}{1+3+5}\) + \(\dfrac{1}{1+3+5+7}\) + ... + \(\dfrac{1}{1+3+5+7+...+2021}\)
\(\Leftrightarrow\) A = \(\dfrac{1}{\dfrac{\left(1+3\right).2}{2}}\) + \(\dfrac{1}{\dfrac{\left(1+5\right).3}{2}}\) + \(\dfrac{1}{\dfrac{\left(1+7\right).4}{2}}\) + ... + \(\dfrac{1}{\dfrac{\left(1+2021\right).1011}{2}}\)
= \(\dfrac{2}{2.4}\) + \(\dfrac{2}{3.6}\) + \(\dfrac{2}{4.8}\) + ... + \(\dfrac{2}{1011.2021}\)
= \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + \(\dfrac{1}{4.4}\) + ... + \(\dfrac{1}{2021.2021}\)
A < \(\dfrac{1}{4}\) + ( \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + ... + \(\dfrac{1}{2020.2021}\) )
< \(\dfrac{1}{4}\) + ( \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{2020}\) - \(\dfrac{1}{2021}\) )
< \(\dfrac{1}{4}\) + ( \(\dfrac{1}{2}\) - \(\dfrac{1}{2021}\) ) < \(\dfrac{1}{4}\) + \(\dfrac{1}{2}\) = \(\dfrac{3}{4}\)
Kiểu như vậy hả ?