Tìm GTNN và GTLN của \(B=\sqrt{x-4}+\sqrt{y-3}\)biết x+y=15
Giúp giúp!!! ^_<
Tìm GTLN và GTNN của
C=\(\sqrt{x-4}+\sqrt{y-3}\) với x+y=15
Áp dụng bất đẳng thức Bunhiacopxki, ta có :
\(C^2=\left(1.\sqrt{x-4}+1.\sqrt{y-3}\right)^2\le\left(1^2+1^2\right)\left(x-4+y-3\right)=16\)
\(\Rightarrow C^2\le16\Rightarrow C\le4\). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x\ge4;y\ge3\\x+y=15\\\sqrt{x-4}=\sqrt{y-3}\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=8\\y=7\end{cases}}\)
Vậy Max C = 4 \(\Leftrightarrow\hept{\begin{cases}x=8\\y=7\end{cases}}\)
Tìm giá trị nhỏ nhất :Xét : \(C^2=x-4+y-3+2\sqrt{\left(x-4\right)\left(y-3\right)}=8+2\sqrt{\left(x-4\right)\left(y-3\right)}\)
Vì \(2\sqrt{\left(x-4\right)\left(y-3\right)}\ge0\) nên \(C^2\ge8\Rightarrow C\ge2\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge4;y\ge3\\x+y=15\\\left(x-4\right)\left(y-3\right)=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=4\\y=11\end{cases}}\) hoặc \(\hept{\begin{cases}x=12\\y=3\end{cases}}\)
Vậy Min C = \(2\sqrt{2}\) \(\Leftrightarrow\orbr{\begin{cases}\left(x;y\right)=\left(4;11\right)\\\left(x;y\right)=\left(12;3\right)\end{cases}}\)
Bài 1: Cho \(x,y>0\)thỏa mãn \(x^4+y^4=4\).Tìm GTNN \(E=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)
Bài 2: Tìm GTNN và GTLN của\(A=\sqrt{3+x}+\sqrt{6-x}\left(-3\le x\le6\right)\)
Bài 3:Tìm GTLN của \(A=\sqrt{x+1}+\sqrt{y+1}\)biết\(\hept{\begin{cases}x,y\ge-1\\x+y=2\end{cases}}\)
Bài 2 :
Tìm min : Bình phương
Tìm max : Dùng B.C.S ( bunhiacopxki )
Bài 3 : Dùng B.C.S
KP9
nói thế thì đừng làm cho nhanh bạn ạ
Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích
toàn 1 lũ hãm điểm
a, Giả sử (x;y) là các số thực thỏa mãn : \(\left(x+\sqrt{3+x^2}\right)\left(y+\sqrt{3+y^2}\right)=9\) .Tìm GTNN của \(P=x^2+xy+y^2\)
b, Tìm GTNN, GTLN của biểu thức: \(P=\sqrt[4]{1+x}+\sqrt[4]{1-x}+\sqrt[4]{1-x^2}\)
Mình đang rất cần nên các bạn giúp mình với nha!
Theo đề bài, ta có:
x3+y3=x2−xy+y2x3+y3=x2−xy+y2
hay (x2−xy+y2)(x+y−1)=0(x2−xy+y2)(x+y−1)=0
⇒\orbr{x2−xy+y2=0x+y=1⇒\orbr{x2−xy+y2=0x+y=1
+ Với x2−xy+y2=0⇒x=y=0⇒P=52x2−xy+y2=0⇒x=y=0⇒P=52
+ với x+y=1⇒0≤x,y≤1⇒P≤1+√12+√0+2+√11+√0=4x+y=1⇒0≤x,y≤1⇒P≤1+12+0+2+11+0=4
Dấu đẳng thức xảy ra <=> x=1;y=0 và P≥1+√02+√1+2+√01+√1=43P≥1+02+1+2+01+1=43
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3
Tìm GTLN và GTNN của C=\(\sqrt{x-4}+\sqrt{y-3}\) với x+y=15
1. Tìm giá trị lớn nhất :
Ta có : \(C^2=\left(\sqrt{x-4}+\sqrt{y-3}\right)^2=x-4+y-3+2\sqrt{\left(x-4\right)\left(y-3\right)}=8+2\sqrt{\left(x-4\right)\left(y-3\right)}\)
Theo bất đẳng thức Cauchy, ta có \(2\sqrt{\left(x-4\right)\left(y-3\right)}\le x-4+y-3=8\)
\(\Rightarrow C^2\le8+8=16\Rightarrow C\le4\) . Dấu "=" xảy ra khi và chỉ khi \(\begin{cases}x\ge4;y\ge3\\x+y=15\\x-4=y-3\end{cases}\) \(\Leftrightarrow\begin{cases}x=8\\y=7\end{cases}\)
Vậy C đạt giá trị lớn nhất bằng 4 khi và chỉ khi (x;y) = (8;7)
2. Tìm giá trị nhỏ nhất :
Ta có : \(C^2=8+2\sqrt{\left(x-4\right)\left(y-3\right)}\) . Vì \(2\sqrt{\left(x-4\right)\left(y-3\right)}\ge0\) nên \(C^2\ge8\Rightarrow C\ge2\sqrt{2}\)
Dấu "=" xảy ra khi và chỉ khi \(\begin{cases}x\ge4;y\ge3\\x+y=15\\\left(x-4\right)\left(y-3\right)=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=4\\y=11\end{cases}\) hoặc \(\begin{cases}x=12\\y=3\end{cases}\)
Vậy C đạt giá trị nhỏ nhất bằng \(2\sqrt{2}\) khi và chỉ khi (x;y) = (4;11) hoặc (x;y) = (12;3)
Tìm : a) GTNN của A = x2 + y2 với x + y = 4
b) GTLN của B = x2y với x > 0, y > 0 và 2x + xy = 4
c) GTNN của \(C=\sqrt{x^2+4x+13}\)
d) GTLN của \(D=\sqrt{x-1}+\sqrt{y-2}\) với x + y = 4
e) GTNN của \(E=\sqrt{25x^2-20x+4}+\sqrt{25x^2-30x+9}\)
f) GTNN của \(F=\left|x+1\right|+\sqrt{x^2+2x+5}\)
câu a) rút x theo y thế vào A rồi áp dụng HĐT
b)rút xy thế vào B
c)HĐT
d)rút x theo y thé vào C
rồi dùng BĐT cô-si
e)BĐT chưa dấu giá trị tuyệt đối
tìm gtln gtnn của hàm số
\(y=\sqrt{1+x}+\sqrt{1-x}+\dfrac{x^2}{4}\)
Lời giải:
TXĐ: $[-1;1]$
$y'=\frac{1}{2\sqrt{x+1}}-\frac{1}{2\sqrt{1-x}}+\frac{x}{2}$
$y'=0\Leftrightarrow x=0$
$f(0)=2$;
$f(1)=f(-1)=\sqrt{2}+\frac{1}{4}$
Vậy $f_{\min}=2; f_{\max}=\frac{1}{4}+\sqrt{2}$
1.Cho a, b, c>0 và a+b+c=1. Tìm GTLN của P=\(a+\sqrt{ab}+\sqrt[3]{abc}\)
2.Cho x, y>0 thỏa mãn:\(x^2+y^2=5\) Tìm GTNN của P=\(x^3+y^3\)
3. Cho x, y, z\(\ge\)0 và x+y+z=3. Tìm GTNN của P=\(x^4+2y^4+3z^4\)
Câu 2-Ta có x^2+y^2=5
(x+y)^2-2xy=5
Đặt x+y=S. xy=P
S^2-2P=5
P=(S^2-5)/2
Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2
Rùi tự tính
Câu1
Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)
=> P<=4/3(a+b+c)=4/3
Vậy Max p =4/3 khi a=4b=16c
1/Tìm GTLN của biểu thức; \(P=x\sqrt{3-x^2}\left(0< x< \sqrt{3}\right)\)
2/ Tìm GTNN của \(P=\left(x^4+1\right)\left(y^4+1\right)\)biết \(x+y=\sqrt{10}\)
Bài 1:
\(P=x\sqrt{3-x^2}=\sqrt{x^2}\cdot\sqrt{3-x^2}\)
\(=\sqrt{x^2\left(3-x^2\right)}\)\(\le\frac{x^2+3-x^2}{2}=\frac{3}{2}\)
Dấu = khi \(x=\sqrt{\frac{3}{2}}\)
Vậy MaxP=\(\frac{3}{2}\Leftrightarrow x=\sqrt{\frac{3}{2}}\)
Tìm GTLN ,GTNN của hàm số sau :
\(y=\sqrt{3+x}+\sqrt{5-x}\)
Help me
Ta có: \(y=\sqrt{3+x}+\sqrt{5-x}\)
ĐKXĐ: \(-3\le x\le5\)
\(y^2=3+x+5-x+2\sqrt{\left(3+x\right)\left(5-x\right)}=8+2\sqrt{\left(3+x\right)\left(5-x\right)}\)\(\ge8\)
\(\Rightarrow y\ge2\sqrt{2}\)
Dấu "=" xảy ra khi và chỉ khi \(\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)(thỏa mãn)
Vậy min y = \(2\sqrt{2}\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
mặt khác \(y^2\) = \(8+2\sqrt{\left(3+x\right)\left(5-x\right)}\le8+3+x+5-x=16\)
\(\Rightarrow y\le4\)
Dấu"=" xảy ra khi và chỉ khi \(3+x=5-x\Leftrightarrow x=1\)(thỏa mãn)
Vậy max y = 4 \(\Leftrightarrow x=1\)