Y=xcos2x+ căn x2+2x+3
1.Số nghiệm của pt x2 -2x-8=4 căn (4-x)(x+2)
2.Cho hình vuông ABCD Tính (vectơ AB,BD)
3. Tìm m để hệ pt y+x2=x(1) 2x+y-m=0 Có nghiệm.
Bài1
A) căn x2-4x+3 =căn 3-2x
B) căn x+7 =5-x
C) căn x2-2x+13 + 2 =2x
Ai giúp em bài này với
Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn.
Tìm đạo hàm cấp hai của hàm số sau: y = xcos2x
Tính đạo hàm cấp hai của các hàm số sau: y = xcos2x
A: -4sin2x
B: -4x.cos2x
C: -4sin2x - 4x.cos2x
D: 4sin2x + 4x.cos2x
Chọn C.
y' = cos2x – 2xsin2x;
y” = -2sin2x – (2sin2x + 4xcos2x) = -4sin2x – 4xcos2x.
Giải hộ e bài này với ai 👍
Câu 1 : a, 4x2 -3x-1=0 / d, 4x4-5x2+1=0
b, x2 - (1+căn 5)x + căn 5= 0 / e,x2 +3=|4x| / f, 2x + 5cănx +3 =0 / g, (x2 +x +1 ).(x2+x+2)=2 / h, x4-5x2+4=0
c, x4 + x2 -20=0 / k, x phần x2-1 -- 1 phần 2(x+1) = 1phan 2
Hãy tìm đạo hàm cấp hai của hàm số cho sau: y = xcos2x
Bài 1. Tìm m để với mọi y>9 ta có m(căn y -3)(-4y)/(3-căn y) > y+1
Bài 2. Tìm m để phương trình x^2+4(m-1)x-12=0 có 2nghiệm pb x1, x2 thỏa mãn 4|x1-2|Căn (4-x2)=(x1+x2-x1x2-8)^2
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
Tìm GTNN của 1/căn(2x-3)+4/căn(y-2)+16/căn(3z-1)+căn(2x-3)+căn(y-2)+căn(3z-1)
Đặt \(A=\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-2}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}\)
Điều kiện xác định : \(\begin{cases}x\ge\frac{3}{2}\\y\ge2\\z\ge\frac{1}{3}\end{cases}\)
Ta có : \(A=\left(\frac{1}{\sqrt{2x-3}}+\sqrt{2x-3}-2\right)+\left(\frac{4}{\sqrt{y-2}}+\sqrt{y-2}-4\right)+\left(\frac{16}{\sqrt{3z-1}}+\sqrt{3z-1}-8\right)+14\)
\(=\frac{\left(2x-3\right)-2\sqrt{2x-3}+1}{\sqrt{2x-3}}+\frac{\left(y-2\right)-4\sqrt{y-2}+4}{\sqrt{y-2}}+\frac{\left(3z-1\right)-8\sqrt{3z-1}+16}{\sqrt{3z-1}}+14\)
\(=\frac{\left(\sqrt{2x-3}-1\right)^2}{\sqrt{2x-3}}+\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}+\frac{\left(\sqrt{3z-1}-4\right)^2}{\sqrt{3z-1}}+14\ge14\)
Dấu "=" xảy ra khi \(\begin{cases}\left(\sqrt{2x-3}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{3z-1}-4\right)^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}\) (TMĐK)
Vậy Min A = 14 <=> (x;y;z) = (2;6;\(\frac{17}{3}\))
Tìm các số thực dương x,y,z thoả mãn:
x. căn của (1-y2) + y. căn của (2-z2) + z. căn của (3-x2) = 3