h(x)=9x2-4
C =
D = x-4+(x>4)
\(C=\sqrt{9x^2}-2x=\left|3x\right|-2x=-3x-2x=-5x\left(x< 0\right)\)
\(D=x-4+\sqrt{16-8x+x^2}\left(x>4\right)\)
\(=x-4+\sqrt{\left(x-4\right)^2}\)
\(=x-4+\left|x-4\right|\)
\(=x-4+x-4\)
\(=2x-8\)
\(C=\sqrt{9x^2}-2x=-3x-2x=-5x\)
\(D=x-4+\sqrt{x^2-8x+16}=x-4+x-4=2x-8\)
Rút gọn:
a) A=(4-x)(16+4x+x2)-(4-x)3
b) B=(3x+2)(9x2-6x+4)-(9x2+6x+4)(3x-2)
c) C=(x+1)(x2-x+1)-x(x+1)2
a) Ta có: \(A=\left(4-x\right)\left(16+4x+x^2\right)-\left(4-x\right)^3\)
\(=64-x^3+\left(x-4\right)^3\)
\(=64-x^3+x^3-12x^2+48x-64\)
\(=-12x^2+48x\)
b) Ta có: \(B=\left(3x+2\right)\left(9x^2-6x+4\right)-\left(3x-2\right)\left(9x^2+6x+4\right)\)
\(=27x^3+8-27x^3+8\)
=16
c) Ta có: \(C=\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)^2\)
\(=x^3+1-x\left(x^2+2x+1\right)\)
\(=x^3+1-x^3-2x^2-x\)
\(=-2x^2-x+1\)
Giải phương trình:
a) 5 + 96/x2-16 = 2x-1/x+4 - 3x-1/4-x
b) 3x+2/3x-2 - 6/2+3x = 9x2/9x2-44
c) 1/x-1 + 1/x+1 = 2/x+2
d) x+1/x-2 - 5/x+2 = 12/x2-4 + 1
b: \(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)
=>-6x+16=0
=>-6x=-16
hay x=8/3(nhận)
c: \(\Leftrightarrow\dfrac{x+1+x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x+2}\)
\(\Leftrightarrow2x\left(x+2\right)=2\left(x^2-1\right)\)
\(\Leftrightarrow2x^2+4x-2x^2+2=0\)
=>4x+2=0
hay x=-1/2(nhận)
Tính giá trị của biểu thức:
a) A=x3+9x2+27x+27 tại x= -3
b) B=(3x+1).(9x2-3x+1)-(1-3x).(1+3x+9x2) tại x=10
c) a3+b3-(a2-ab+b3).(a-b) tại a= -4;b=4
Giải chi tiết giúp mình nha.Cảm ơn.
\(a,=\left(x+3\right)^3=\left(-3+3\right)^3=0\\ b,=27x^3+1-\left(1-27x^3\right)=27x^3+1-1+27x^3=54x^3\\ =54\cdot10^3=54\cdot1000=54000\)
c, hình như sai đề á e
bài 1 :
a) 20x - 5y b) 5x ( x - 1 ) - 3x ( x - 1 )
c) x ( x + y ) - 6x - 6y d) 6x3 - 9x2 e) 4x2y - 8xy2 + 10x2y2
g) 20x2y - 12x3 h) 8x4+ 12x2y4- 16x3y4 k) 4xy2 + 8xyz
l) 3x(x + 1) - 5y( x + 1 ) m) 4x2 - 1 o) 9 - ( x - y )2
p) x3 + 27 n) ( x-y )2 - 4 r)x4 + 2x2 + 1
s) 4x2 - 12xy + 9y2 t) x2 - x - y2 - y u) x2 - 2xy + y2 - z2
v) x3 - x + y3 - y
GIẢI HỘ TUI VỚI Ạ
a) 20x-5y=5(4x-y)
b) 5x(x-1)-3x(x-1)=(5x-3x)(x-1)=2x(x-1)
c) x(x+y)-6x-6y=x(x+y)-(6x+6y)=x(x+y)-6(x+y)=(x-6)(x+y)
d) 6x3-9x2=3x2(2x-3)
e) 4x2y - 8xy2 + 10x2y2=2xy(2x-4y+5xy)
g) 20x2y-12x3=4x2(5y-3x)
h) 8x4+ 12x2y4- 16x3y4 = 4x2(2x2+3y4-4xy4)
k) 4xy2 + 8xyz=4xy(y+2z)
l) 3x(x + 1) - 5y( x + 1 )=(x+1)(3x-5y)
m) 4x2-1=(2x-1)(2x+1)
o) 9-(x-y)2=(3-x+y)(3+x-y)
p) x3+27=(x+3)(x2+3x+9)
n) (x-y)2-4=(x-y-2)(x-y+2)
r) x4 + 2x2 + 1=(x4+x2)+(x2+1)=x2(x2+1)+(x2+1)=(x2+1)2
s) 4x2 - 12xy + 9y2 = (2x-3y)2
t) x2 - x - y2 - y =(x2-y2)-(x+y)=(x-y)(x+y)-(x+y)=(x+y)(x-y-1)
v) x3 - x + y3 - y = (x3+y3)-(x+y)=(x+y)(x2-xy+y2)-(x+y)=(x+y)(x2-xy+y2-1)
a: \(20x-5y=5\left(4x-y\right)\)
b: \(5x\left(x-1\right)-3x\left(x-1\right)=2x\left(x-1\right)\)
c: \(x\left(x+y\right)-6x-6y=\left(x+y\right)\left(x-6\right)\)
d: \(6x^3-9x^2=3x^2\left(x-3\right)\)
e: \(4x^2y-8xy^2+10x^2y^2=2xy\left(2x-4y+5xy\right)\)
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
MN giúp mk vs ! Sắp nộp r o(╥﹏╥)o
a) \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)
\(\Leftrightarrow\left(3x-2\right)\left[\left(3x\right)^2+3x\cdot2+2^2\right]-\left(3x-1\right)\left[\left(3x\right)^2+3x\cdot1+1\right]=x-4\)
\(\Leftrightarrow\left(3x\right)^3-2^3-\left[\left(3x\right)^3-1\right]=x-4\)
\(\Leftrightarrow x=-3\) ( thỏa mãn )
P/s : Đề câu b) viết lại nhé, mình không hiểu lắm :))
\(9\left(2x+1\right)=4\left(x-5\right)^2\)
\(\Leftrightarrow18x+9=4\left(x^2-10x+25\right)\)
\(\Leftrightarrow18x+9=4x^2-40x+100\)
\(\Leftrightarrow4x^2-58x+91=0\)
Ta có \(\Delta=58^2-4.4.91=1908,\sqrt{\Delta}=6\sqrt{53}\)
\(\Rightarrow x=\frac{58\pm6\sqrt{53}}{8}\)
Phân tích đa thức thành nhân tử:
a) 81x5-x3
b) 9x2y-12xy+4y
c) (5-x)2-16(x-2)2
d) 9x2-y2-21x-7y
e) -y2+8y+9x2-16
f) 5x2-4x-1
g) (x+7)(x+9)-17
h) x(x+2)(x+4)(x+6)+15
a: \(81x^5-x^3\)
\(=x^3\left(81x^2-1\right)\)
\(=x^3\left(9x-1\right)\left(9x+1\right)\)
b: \(9x^2y-12xy+4y\)
\(=y\left(9x^2-12x+4\right)\)
\(=y\left(3x-2\right)^2\)
c: \(\left(5-x\right)^2-16\left(x-2\right)^2\)
\(=\left(x-5\right)^2-\left(4x-8\right)^2\)
\(=\left(x-5-4x+8\right)\left(x-5+4x-8\right)\)
\(=-3\left(x-1\right)\left(5x-13\right)\)
d: Ta có: \(9x^2-y^2-21x-7y\)
\(=\left(3x-y\right)\left(3x+y\right)-7\left(3x+y\right)\)
\(=\left(3x+y\right)\left(3x-y-7\right)\)
e: Ta có: \(-y^2+8y-16+9x^2\)
\(=-\left(y^2-8y+16-9x^2\right)\)
\(=-\left(y-4-3x\right)\left(y-4+3x\right)\)
f: Ta có: \(5x^2-4x-1\)
\(=5x^2-5x+x-1\)
\(=5x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(5x+1\right)\)
a/2x5y-6x3y2
b/14x2y-xy2+28x2y2
c/x2+4x+4
d/9x2+6x+1
e/2x-1-x2
j/-x3+9x2-27x+27
g/(x+y)2-9x2
h/x2+xy+x+y
i/x2-4+xy-2y
k/x3-4x2+4x
k/x2-3x+2
l/x2-3x+2
m/x2-5x+6
n/x2-3x-4
c: \(x^2+4x+4=\left(x+2\right)^2\)
d: \(9x^2+6x+1=\left(3x+1\right)^2\)
9x2+12x+4=0
x2+\(\dfrac{1}{4}\)=x
4-\(\dfrac{12}{x}\)+\(\dfrac{9}{x^2}\)=0
(a) \(9x^2+12x+4=0\)
\(\Leftrightarrow\left(3x+2\right)^2=0\Leftrightarrow3x+2=0\Leftrightarrow x=-\dfrac{3}{2}\)
(b) \(x^2+\dfrac{1}{4}=x\)
\(\Leftrightarrow x^2-x+\dfrac{1}{4}=0\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
(c) \(4-\dfrac{12}{x}+\dfrac{9}{x^2}=0\left(x\ne0\right)\)
\(\Leftrightarrow\left(2-\dfrac{3}{x}\right)^2=0\Leftrightarrow2-\dfrac{3}{x}=0\Leftrightarrow x=\dfrac{3}{2}\)