mọi người giải giùm mình bài này với
\(x^2-8x+10=\left(x+2\right)\sqrt{2x-1}\)
Giải phương trình:
1, \(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)
2, \(\sqrt{2x+4}-2\sqrt{2-x}=\frac{6x-4}{\sqrt{x^2+4}}\)
3, \(\sqrt{x^2+15}=3x-2+\sqrt{x^2+8}\)
- Sử dụng phương pháp liên hợp
Mọi người giúp mình với ạ mình đang cần gấp!
À sau khi nhân liên hợp chia ra 2 trường hợp, VD như bài 3 sau khi nhân liên hợp sẽ được: \(\left(x-1\right)\left(\frac{x+1}{\sqrt{x^2+15}+4}-3-\frac{x+1}{\sqrt{x^2+8}+3}\right)=0\)
Nếu được mọi người giải thích giùm em tại sao biểu thức trong dấu ngoặc thứ 2 luôn luôn khác 0 ạ (Tương tự với các bài khác nếu được)
Em thử nha,sai thì thôi ạ.
2/ ĐK: \(-2\le x\le2\)
PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)
Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk
PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)
\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)
Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..
1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)
ĐK \(x\ge-1\)
Nhân liên hợp ta có
\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)
<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)
<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)
<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)
<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)
=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)
Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)
2. Tiếp đoạn của tth
\(\sqrt{x^2+4}=\sqrt{2x+4}+\sqrt{8-4x}\)
<=> \(x^2+4=2x+4+8-4x+2\sqrt{8\left(x+2\right)\left(x-2\right)}\)
<=> \(x^2+2x-8=4\sqrt{2\left(x+2\right)\left(2-x\right)}\)
<=>\(\left(x-2\right)\left(x+4\right)=4\sqrt{2\left(x+2\right)\left(2-x\right)}\)
<=> \(\orbr{\begin{cases}x=2\\\left(x+4\right)\sqrt{2-x}=-4\sqrt{2\left(x+2\right)}\left(2\right)\end{cases}}\)
Pt (2) vô nghiệm do \(x+4>0\)với \(x\ge-2\)
=> \(x=2\)
Vậy x=2
Mọi người ơi, giải giúp mình bài này với
Rút gọn biểu thức:
\(\left(\sqrt{x+2\sqrt{x-2}-1}\right)\left(\sqrt{x-1}-1\right):\left(\sqrt{x}-\sqrt{3}\right)\left(x\ge2,\right)x\ne3\)
Mình đang cần gấp, nhanh lên chút nhé
Mọi người giải giúp mình mấy bài này nha
a,\(\left(3x+1\right)\sqrt{3x+1}=8x^2+5x+1\\\)
b,\(9x+17=6\sqrt{8x+1}+4\sqrt{x+3}\)
a)\(\left(3x+1\right)\sqrt{3x+1}=8x^2+5x+1\)
\(pt\Leftrightarrow\left(3x+1\right)\sqrt{3x+1}=8x^2+5x+1\)
\(\Leftrightarrow\frac{\left(3x+1\right)^3-1}{\left(3x+1\right)\sqrt{3x+1}+1}=8x^2+5x\)
\(\Leftrightarrow\frac{\left(3x+1-1\right)\left[\left(3x+1\right)^2+3x+2\right]}{\left(3x+1\right)\sqrt{3x+1}+1}=x\left(8x+5\right)\)
\(\Leftrightarrow\frac{9x\left(3x^2+3x+1\right)}{\left(3x+1\right)\sqrt{3x+1}+1}-x\left(8x+5\right)=0\)
\(\Leftrightarrow x\left(\frac{9\left(3x^2+3x+1\right)}{\left(3x+1\right)\sqrt{3x+1}+1}-\left(8x+5\right)\right)=0\)
\(\Rightarrow x=0\), nghiệm còn lại khó quá t gg =))
b)\(9x+17=6\sqrt{8x+1}+4\sqrt{x+3}\)
ĐK:\(x\ge-\frac{1}{8}\)
\(pt\Leftrightarrow9x-9=6\sqrt{8x+1}-18+4\sqrt{x+3}-8\)
\(\Leftrightarrow9\left(x-1\right)=\frac{36\left(8x+1\right)-324}{6\sqrt{8x+1}+18}+\frac{16\left(x+3\right)-64}{4\sqrt{x+3}+8}\)
\(\Leftrightarrow9\left(x-1\right)=\frac{288x-288}{6\sqrt{8x+1}+18}+\frac{16x-16}{4\sqrt{x+3}+8}\)
\(\Leftrightarrow9\left(x-1\right)-\frac{288\left(x-1\right)}{6\sqrt{8x+1}+18}-\frac{16\left(x-1\right)}{4\sqrt{x+3}+8}=0\)
\(\Leftrightarrow\left(x-1\right)\left(9-\frac{288}{6\sqrt{8x+1}+18}-\frac{16}{4\sqrt{x+3}+8}\right)=0\)
Suy ra x=1 là nghiệm duy nhất
giải bài này băng máy tính casio giùm mình nha
\(\left(x+\frac{x-\sqrt{x}+1}{\sqrt{x}-1}\right):\left(\frac{x+1}{x\sqrt{x}-1}-\frac{2\sqrt{x}}{x+\sqrt{x}+1}\right)\)
Giải giùm mình bài này
$\left[\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{y-x}\right].\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}$
\(\)
Giúp mình bài này với
Giải phương trình
1 + 2x - x2 = \(\sqrt{\left(x+1\right)\left(2-x\right)}\)
Mọi người ơi, giúp em giải bài này chi tiết với ạ, em cảm ơn nhiều.
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{2}{x-\sqrt{x}}\right):\dfrac{1}{\sqrt{x}-1}\)
Mọi người ơi, giúp em giải thật chi tiết từng bước bài này với ạ. Em cảm ơn mọi người rất rất nhiều ạ!
\(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\) Với x>0; x khác 1
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
Giải phương trình:
a) \(5x^2-10x=4\left(x-1\right)\sqrt{x^2-2x+2}\)
b) \(\sqrt{2x^2+22x+29}-x-2=2\sqrt{2x+3}\)
c) \(x^3-7x^2+9x+12=\left(x-3\right)\left(x-2+5\sqrt{x-3}\right)\left(\sqrt{x-3}-1\right)\)
Mọi người giúp gấp với ạ.