Giải phương trình:
a) \(5x^2-10x=4\left(x-1\right)\sqrt{x^2-2x+2}\)
b) \(\sqrt{2x^2+22x+29}-x-2=2\sqrt{2x+3}\)
c) \(x^3-7x^2+9x+12=\left(x-3\right)\left(x-2+5\sqrt{x-3}\right)\left(\sqrt{x-3}-1\right)\)
\(\sqrt{\left(x+2\right)\left(2x-1\right)}\)-3\(\sqrt{x+6}\)-4=3\(\sqrt{x+2}\)-\(\sqrt{\left(x+6\right)\left(2x-1\right)}\)
các bạn làm giúp nhé
Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp
Các bạn giải giúp mình bài toán này nha:
Tìm giá trị nhỏ nhất của biểu thức sau:
x,, y, z là các số dương.
\(P=\sqrt[3]{4\left(x^3+y^3\right)}+\sqrt[3]{4\left(x^3+z^3\right)}+\sqrt[3]{4\left(z^3+x^3\right)}+2\left(\frac{x}{y^2}+\frac{y}{z^2}+\frac{z}{x^2}\right)\)
Xin chân thành cảm ơn.
1)\(\begin{cases}\sqrt{4x^2+\left(4x-9\right)\left(x-3y\right)}+\sqrt{3xy}=9y\\4\sqrt{\left(x+2\right)\left(3y+2x\right)}=3x+9\end{cases}\) 4)\(\begin{cases}\left(x^2+y\right)\sqrt{x-y+6}=2x^2-x+3y-2\\\sqrt{10x-xy-12}+1=\frac{y-x}{\sqrt{y-4}+\sqrt{6-x}}\end{cases}\)
2)\(\begin{cases}x^2+\left(y-6\right)^2=y+13x+27\\\sqrt{9x^2+\left(2x-3\right)\left(x-y\right)}+4\sqrt{xy}=7y\end{cases}\) 5)\(\begin{cases}\sqrt{4xy+\left(3\sqrt{xy}-7\right)\left(x-y\right)}+2\sqrt{xy}=4y\\\left(2x+1\right)\left[12y-1+9\sqrt{xy}-x^2-x\right]=27\left(x+1\right)\end{cases}\)
3)\(\begin{cases}\sqrt{\left(x+2\right)\left(y+1\right)+\left(x-y+1\right)\sqrt{y^2+1}}+\sqrt{x+2}=y+\sqrt{y+1}+1\\\sqrt{3x+1}-\sqrt{y+1}=2x^2+4x-y-1\end{cases}\)
Giải phương trình:
a. \(4\sqrt{x+1}-1=3x+2\sqrt{1-x}+\sqrt{1-x^2}\)
b. \(\left(x+2\right)\left(\sqrt{2x+3}-2\sqrt{x+1}\right)+\sqrt{2x^2+5x+3}-1=0\)
Giải hộ mình bài này với :
\(x-2\sqrt{x-1}-\left(x-1\right)\sqrt{x}+\sqrt{x^2-x}=0\)
Số nghiệm của phương trình \(\left(x+3\right)\sqrt{2x^2+1}=x^2+x+3\) là.
Mọi người giải chi tiết giúp em với ạ.
Giải pt:
\(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\) \(x^2+3x+4=\left(x+3\right)\sqrt{x^2+x+2}\)
\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\) \(15x^2+2\left(x+1\right)\sqrt{x+2}=2-5x\)