cho tỉ lệ thức (x+y)/(x+z)=(x-y)/(x-z) tính (2014y^2+2015y^2+2016z^2)/(2015y^2+2016y^2+2017z^2)
cho tỉ lệ thức (x+y)/(x+z)=(x-y)/(x-z) tính (2014y^2+2015y^2+2016z^2)/(2015y^2+2016y^2+2017z^2)
Câu hỏi tương tự Đọc thêmToán lớp 7a) cho tỉ lệ thức: x+y/x+z=x-y/x-z Tính M=2014y^2 +2015yz+2016z^2 / 2016y^2+2016yz+2017z^2
cho x,y,z là các số dương. chứng minh rằng:
\(\dfrac{x^2}{y+2015z}+\dfrac{y^2}{z+2015x}+\dfrac{z^2}{x+2015y}\ge\dfrac{x+y+z}{2016}\)
cho x+y+z=2016.Tính gia trị:
A=( xy+2016z)(yz+2016x)(zx+2016y)/(x+y)^2(y+z)^2(z+x)^2
\(A=\frac{\left(xy+2016z\right)\left(yz+2016x\right)\left(zx+2016y\right)}{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\)
Thay \(x+y+z=2016\)
\(A=\frac{\left[xy+\left(x+y+z\right)z\right]\left[yz+\left(x+y+z\right)x\right]\left[zx+\left(x+y+z\right)y\right]}{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\)
\(A=\frac{\left[xy+xz+yz+z^2\right]\left[yz+xy+xz+x^2\right]\left[zx+xy+yz+y^2\right]}{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)
\(A=\frac{\left[x\left(y+z\right)+z\left(y+z\right)\right]\left[y\left(z+x\right)+x\left(z+x\right)\right]\left[x\left(z+y\right)+y\left(z+y\right)\right]}{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)
\(A=\frac{\left[\left(y+z\right)\left(x+z\right)\right]\left[\left(x+z\right)\left(x+y\right)\right]\left[\left(z+y\right)\left(x+y\right)\right]}{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)
\(A=\frac{\left(x+z\right)\left(x+z\right)\left(y+z\right)\left(y+z\right)\left(x+y\right)\left(x+y\right)}{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)
\(A=\frac{\left(x+z\right)^2\left(y+z\right)^2\left(x+y\right)^2}{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)
\(A=1\)
Áp dụng : cho x, y là các số nguyên dương thỏa mãn 2015x^2 + x = 2016y^2 + y . Chứng minh rằng : x-y ; 2015x+2015y+1 và 2016x + 2016y là số chính phương
Chứng minh\(\frac{x^2}{y+2015z}+\frac{y^2}{z+2015x}+\frac{z^2}{x+2015y}\)<= \(\frac{x+y+z}{2016}\)với x,y,z là số dương
Đề bài sai, chiều đúng của BĐT phải là:
\(\frac{x^2}{y+2015z}+\frac{y^2}{z+2015x}+\frac{z^2}{x+2015y}\ge\frac{x+y+z}{2016}\)
\(\left(xy+2016z\right)\left(yz+2016x\right)\left(zx+2016y\right)\frac{1}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2}\) Tính bt trên biết x+y+z=2016
Cho dãy tỉ số (2015*x+y+z+t)/x=(x+2015y+z+t)/y=(x+y+2015z+t)/z=(x+y+z+2015t)/t Tính A = (x+y)/(z+t)=(y+z)/(t+x)=(z+t)/(x+y)=(t+x)/(y+z)
x^2+z^2-y^2+2xz=?
x^3-x^2y+2015x-2015y
có ai biết phân tích đa thức thành nhân tử không