Đại số lớp 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Gia Linh Hoàng

cho x+y+z=2016.Tính gia trị:

A=( xy+2016z)(yz+2016x)(zx+2016y)/(x+y)^2(y+z)^2(z+x)^2

Kuro Kazuya
15 tháng 1 2017 lúc 12:47

\(A=\frac{\left(xy+2016z\right)\left(yz+2016x\right)\left(zx+2016y\right)}{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\)

Thay \(x+y+z=2016\)

\(A=\frac{\left[xy+\left(x+y+z\right)z\right]\left[yz+\left(x+y+z\right)x\right]\left[zx+\left(x+y+z\right)y\right]}{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\)

\(A=\frac{\left[xy+xz+yz+z^2\right]\left[yz+xy+xz+x^2\right]\left[zx+xy+yz+y^2\right]}{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)

\(A=\frac{\left[x\left(y+z\right)+z\left(y+z\right)\right]\left[y\left(z+x\right)+x\left(z+x\right)\right]\left[x\left(z+y\right)+y\left(z+y\right)\right]}{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)

\(A=\frac{\left[\left(y+z\right)\left(x+z\right)\right]\left[\left(x+z\right)\left(x+y\right)\right]\left[\left(z+y\right)\left(x+y\right)\right]}{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)

\(A=\frac{\left(x+z\right)\left(x+z\right)\left(y+z\right)\left(y+z\right)\left(x+y\right)\left(x+y\right)}{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)

\(A=\frac{\left(x+z\right)^2\left(y+z\right)^2\left(x+y\right)^2}{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)

\(A=1\)


Các câu hỏi tương tự
Thư Đặng
Xem chi tiết
Đức Huy ABC
Xem chi tiết
Ngọc Minh Dương
Xem chi tiết
Nguyễn Công Quốc Huy
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
Hoàng Nguyễn Quỳnh Khanh
Xem chi tiết
Phạm Thùy Linh
Xem chi tiết
Nguyen Bao Linh
Xem chi tiết
Tsukino Usagi
Xem chi tiết