Đề bài sai, chiều đúng của BĐT phải là:
\(\frac{x^2}{y+2015z}+\frac{y^2}{z+2015x}+\frac{z^2}{x+2015y}\ge\frac{x+y+z}{2016}\)
Đề bài sai, chiều đúng của BĐT phải là:
\(\frac{x^2}{y+2015z}+\frac{y^2}{z+2015x}+\frac{z^2}{x+2015y}\ge\frac{x+y+z}{2016}\)
Có ba số thực dương x, y, z. Chứng minh rằng:
\(\frac{\sqrt{x}+\sqrt{y}}{z}+\frac{\sqrt{y}+\sqrt{z}}{x}+\frac{\sqrt{z}+\sqrt{x}}{y}>\frac{2}{\sqrt{x}}+\frac{2}{\sqrt{y}}+\frac{2}{\sqrt{z}}\)
Cho các số dương x,y,z thỏa mãn: xy + yz + zx = 3xyz. Chứng minh rằng
\(\frac{x^3}{x^2+z}+\frac{y^3}{y^2+x}+\frac{z^3}{z^2+y}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Cho các số thực x, y, z dương
chứng minh: \(\frac{1}{x^3y^3}+\frac{y^3}{z^3}+x^3z^3\ge\frac{1}{x^2y^2}+\frac{y^2}{z^2}+x^2z^2\)
Cho các số x, y, z dương. Chmr:
\(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)
Cho x,y,z dương thỏa mãn x + y + z = xy + yz + zx. Chứng minh:
\(\frac{1}{x^2+y+1}+\frac{1}{y^2+z+1}+\frac{1}{z^2+x+1}\le1\)
Cho 3 số x,y,z >0 thỏa x+y+z=6 chứng minh rằng \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge6\)
Cho các số dương x;y;z thỏa mãn \(x^3+y^3+z^3=1\). Chứng minh rằng
\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}>2\)
cho 3 số dương x,y,z thoã mãn điều kiện x^3+y^3+z^3=1 chứng minh bất đẳng thức
\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\)
Cho x,y,z là các số thực dương thỏa mãn xy+yz+zx=1
Chứng minh rằng \(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)