Đã tìm ra lời giải:
gt \(\Rightarrow\left(xy+yz+zx\right)^2=\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Leftrightarrow xy+yz+zx\ge3\)
Áp dụng bđt Bunhiacopxki:
\(\frac{1}{\left(x^2+y+1\right)\left(1+y+z^2\right)}\le\frac{1}{\left(x+y+z\right)^2}\Rightarrow\frac{1}{x^2+y+1}\le\frac{1+y+z^2}{\left(x+y+z\right)^2}\)
Tương tự rồi cộng lại, ta được:
\(VT\le\frac{\left(x^2+y^2+z^2\right)+\left(x+y+z\right)+3}{\left(x+y+z\right)^2}\)
\(=\frac{\left(x+y+z\right)^2-2\left(xy+yz+zx\right)+\left(xy+yz+zx\right)+3}{\left(x+y+z\right)^2}\)
\(=1+\frac{-\left(xy+yz+zx\right)+3}{\left(xy+yz+zx\right)^2}\le1+\frac{-3+3}{3^2}=1\)
Dấu đẳng thức xảy ra khi x = y = z = 1