Cho tam giác ABC vuông tại B, phân giác AD. Kẻ DI vuông góc với AC tại I. Gọi H là giao điểm của AB và DI. Chứng minh:
a.△ABD=△AID
b. HD=DC
Cho tam giác ABC vuông tại B có góc A bằng 600. Vẽ đường cao BH. Trên tia đối của tia HB lấy điểm D sao cho HB = HD. Kẻ BM vuông góc với DC tại M.
a) Chứng minh tam giác ABD cân.
b) Chứng minh CB = CD.
c) Gọi I là giao điểm của BM và CH. Chứng minh DI vuông góc với BC.
d) Chứng minh CI = 2IH.
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
HB=HD
AH chung
Do đó: ΔAHB=ΔAHD
Suy ra: AB=AD
Xét ΔABD có AB=AD
nên ΔABD cân tại A
b: Xét ΔCHB vuông tại H và ΔCHD vuông tại H có
CH chung
HB=HD
Do đó: ΔCHB=ΔCHD
Suy ra: CB=CD
c: Xét ΔDBC có
BM là đường cao ứng với cạnh DC
CH là đường cao ứng với cạnh BD
BM cắt CH tại I
Do đó: I là trực tâm của ΔDCB
Suy ra: DI\(\perp\)BC
cho tam giác abc có ab=ac. kẻ bd vuông góc với ac tại d kẻ ce vuông góc ab tại e. Gọi I là giao điểm của BD và CE. CA chứng minh rằng:
a) tam giác ABD= tam giác ACE
b) EI=DI
AI vuông góc với BC
tam giác abc vuông tại A. tia phân giác của góc ABC cắt AC tại D, từ D kẻ DH vuông góc với HB tại H. gọi K là giao điểm của DH và AB
a, chứng minh: tam giác ABD = tam giácHBD, từ đó suy ra AD = HD
b, so sánh độ dài cạnh AD và DC
c, Biết HD = 5cm, HC = 12cm. tính độ dài cạnh dc?
Bạn chú ý viết cách phần cho và phần yêu cầu.
a/ Xét t/g ABI và t/g ADI có
AI : chung
\(\widehat{BAI}=\widehat{CAI}\) (AI là pg góc BAC)
AB = AD (GT)
=> t/g ABI = t/g ADI (c.g.c)
=> BI = DI (2 cạnh t/ứ)
b/ Có t/g ABI = t/g ADI
=> \(\widehat{ABI}=\widehat{ADI}\)(2 góc t/ứ)
=> \(180^o-\widehat{ABI}=180^o-\widehat{ADI}\)
=> \(\widehat{IBK}=\widehat{IDC}\) Xét t/g BIK và t/g DIC có
\(\widehat{IBK}=\widehat{IDC}\)
IB = DI (cmt)
\(\widehat{BIK}=\widehat{DIC}\)(đối đỉnh)
=> t/g BIK = t/g DIC (g.c.g)
c/ Có t/g BIK = t/g DIC
=> BK = DC (2 cạnh t/ứ) => AB + BK = DC + AD
=> AK = AC
=> t/g AKC cân tại A
Mà AI là pg góc BAC (K thuộc AB)
=> AI đồng thời là đường cao t/g AKC
=> AI ⊥ KC Mà BH ⊥ KC
=> AI // BH
bạn tự vẽ hình nhá
Vì AI là tia phân giác ⇔ \(\widehat{BAI}=\widehat{DAI}=\dfrac{\widehat{BAC}}{2}\)
a) xét Δ ABI và ΔADI, có:
AB=AD
\(\widehat{BAI}=\widehat{DAI}\) (cmt)
AI chung
⇒Δ ABI =Δ ADI (c.g.c)
⇒BI=DI (2 cạnh t/ứng) (đpcm)
b) Do Δ ABI =Δ ADI (cmt) ⇒ \(\widehat{ABI}=\widehat{ADI}\)
Có: \(\widehat{ABI}+\widehat{IBK}\) =1800 (2 góc kề bù)
\(\widehat{ADI}+\widehat{IDC}\) =1800 (2 góc kề bù)
Mà \(\widehat{ABI}=\widehat{ADI}\) (cmt) ⇒ \(\widehat{IBK}=\widehat{IDC}\)
Vì \(\widehat{BIK}\) và \(\widehat{DIC}\) là 2 góc đối đỉnh ⇒ \(\widehat{BIK}\) =\(\widehat{DIC}\)
xét Δ BKI và Δ DCI có:
\(\widehat{IBK}=\widehat{IDC}\) (cmt)
BI=ID (cmt)
\(\widehat{BIK}\) =\(\widehat{DIC}\) (cmt)
⇒Δ BKI = Δ DCI (g.c.g) (đpcm)
c) Từ Δ BKI = Δ DCI (cmt) ⇒ BK=DC
Có AB=AD (gt) ; BK=DC (cmt)
⇔AB+BK=AD+DC
⇔AK=AC
⇒Δ ACK cân tại A.
Mà AI là phân giác của \(\widehat{KAC}\) (gt)
⇒AI vừa là đường phân giác vừa là đường cao của Δ ACK.
⇒AI ⊥ CK. mà BH ⊥ CK (gt)
⇒AI // BH (đpcm)
Cho △ ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Kẻ DI vuông góc với BC (I ∈ BC )
a)Chứng minh △ABD=△IBD
b) Chứng minh BD ⊥AI
c)Gọi K là giao điểm của hai đường thẳng DI và AB. Chứng minh DK = DC
d)Từ I kẻ đường thẳng // với BD cắt AB tại E. Chứng minh △ BIE cân
a)Xét \(\Delta ABD=\Delta IBD\left(ch-gn\right)\Rightarrow AB=BI;AD=DI.\)
b)Xét \(\Delta ABH=\Delta IBH\left(c-g-c\right)\Rightarrow AHB=IHB=90^0\)
Suy ra \(AI\perp BD\)
c)XÉT \(\Delta ADK=\Delta IDC\left(cgv-gnk\right)\Rightarrow KB=DC\)
d) vì \(BD//EI\Rightarrow DBI=BIE;DBI=BEI\)
HAY \(BIE=BEI\Rightarrow\Delta BIE\)CÂN TẠI B
Cho ABC vuông tại B có 60o A , phân giác góc BAC cắt BC ở D. Kẻ DH vuông góc với AC ( H thuộc AC) a. Chứng minh ABD AHD b. Chứng minh HA HC c. So sánh DC và AB d. Gọi I là giao điểm của HD và AB, lấy E là trung điểm của CI. Chứng minh A,D,E thẳng hàng
a) Xét ΔABD và ΔAHD có:
∠ABD = ∠AHD = 90 (gt)
Cạnh AD chung
∠BAD = ∠HAD (gt)
⇒ ΔABD = ΔAHD (ch - gn)
b) Xét ΔABC có:
∠B = 90o
⇒ ∠A + ∠C =90o
⇒ ∠C = 90o − ∠A = 90o − 60o = 30o
Vì AD là tia phân giác của ∠A (gt)
⇒ ∠BAD = ∠DAC = ∠A/2 = 60o/2 = 30o
⇒ ∠C = ∠DAC = 30o
⇒ ΔADC cân tại D
⇒ AD = DC
⇒ AH = HC (quan hệ giữa đường xiên và hình chiếu)
c) Xét ΔABD có :
AB < AD (cạnh góc vuông < cạnh huyền)
Mà AD = DC (cmt)
⇒ DC > AB
Hai ý còn lại bạn tự làm nhé mik mỏi tay lắm rùi
Cho tam giác ABC. Ở phía ngoài tam giác ABC vẽ các tam giác vuông tại A là ABD và ACE có: AB = AD, AC = AE. kẻ AH vuông góc với BC. Gọi I là giao điểm của HA và DE. chứng minh: DI = IE
cho tam giác ABC vuông tại A, phân giác BD. Kẻ DH vuông góc với BC tại H
1, Chứng minh tam giác ABD và tam giác HBD bằng nhau
2, Gọi E là giao điểm của đường thẳng Ab và đường thẳng HD. Chứng minh DC=DE
3, Chứng minh AH// CE
4, Phân giác ACB cắt BD tại I. Kẻ IM vuông góc với AB. chứng minh
AB+AC-BC=2AM
cho tam giác ABC vuông tại A, phân giác BD. Kẻ DH vuông góc với BC tại H
1, Chứng minh tam giác ABD và tam giác HBD bằng nhau
2, Gọi E là giao điểm của đường thẳng Ab và đường thẳng HD. Chứng minh DC=DE
3, Chứng minh AH// CE
4, Phân giác ACB cắt BD tại I. Kẻ IM vuông góc với AB. chứng minh
AB+AC-BC=2AM