Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Nguyễn Quốc Anh
Xem chi tiết
Nguyễn Ngọc Anh Minh
11 tháng 10 2016 lúc 16:17

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=\)

\(=\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)=13^2=169\)

\(\Rightarrow85+2\left(ab+bc+ca\right)=169\Rightarrow ab+bc+ca=42\)

hu ki di
11 tháng 10 2016 lúc 16:12

(a +b+c)2 = a2 + b+ c2 + 2ab + 2ac + 2bc ( hằng đẳng thức mở rộng )

132 = 85 + 2 ( ab + bc +ca )

\(\Rightarrow\)ab + bc + ca = (169 - 85) :2 = 42

Trần Nguyễn Quốc Anh
11 tháng 10 2016 lúc 16:19

cam on

Nguyễn Trọng Đạt
Xem chi tiết
linh angela nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 10 2018 lúc 2:50

Kwalla
Xem chi tiết

a: ĐKXĐ: \(\left(a+b+c\right)^2-\left(ab+bc+ca\right)<>0\)

=>\(a^2+b^2+c^2+2\left(ab+ac+bc\right)-\left(ab+ac+bc\right)<>0\)

=>\(a^2+b^2+c^2+ab+ac+bc<>0\)

=>\(2a^2+2b^2+2c^2+2\left(ab+ac+bc\right)<>0\)

=>\(\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(a^2+2ac+c^2\right)<>0\)

=>\(\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2<>0\)

Dấu '=' xảy ra khi \(\begin{cases}a+b=0\\ b+c=0\\ a+c=0\end{cases}\Rightarrow a=b=c=0\)

=>Để M xác định thì \(a^2+b^2+c^2<>0\)

b: \(\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2+\left(ab+ac+bc\right)^2\)

\(=\left(a^2+b^2+c^2\right)\left\lbrack a^2+b^2+c^2+2\left(ab+ac+bc\right)\right\rbrack+\left(ab+ac+bc\right)^2\)

\(=\left(a^2+b^2+c^2\right)^2+2\left(a^2+b^2+c^2\right)\left(ab+ac+bc\right)+\left(ab+ac+bc\right)^2\)

\(=\left(a^2+b^2+c^2+ab+ac+bc\right)^2\)

\(\left(a+b+c\right)^2-ab-ac-bc\)

\(=a^2+b^2+c^2+2\left(ab+ac+bc\right)-\left(ab+ac+bc\right)\)

\(=a^2+b^2+c^2+ab+ac+bc\)

Ta có: \(M=\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2+\left(ab+ac+bc\right)^2}{\left(a+b+c\right)^2-ab-ac-bc}\)

\(=\frac{\left(a^2+b^2+c^2+ab+ac+bc\right)^2}{\left(a^2+b^2+c^2+ab+ac+bc\right)}\)

\(=a^2+b^2+c^2+ab+ac+bc\)

tiphanni
Xem chi tiết
Khanh7c5 Hung
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 1 2021 lúc 15:32

\(P\le a^2+b^2+c^2+3\sqrt{3\left(a^2+b^2+c^2\right)}=12\)

\(P_{max}=12\) khi \(a=b=c=1\)

Lại có: \(\left(a+b+c\right)^2=3+2\left(ab+bc+ca\right)\ge3\Rightarrow a+b+c\ge\sqrt{3}\)

\(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)

\(\Rightarrow\sqrt{3}\le a+b+c\le3\)

\(P=\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}+3\left(a+b+c\right)\)

\(P=\dfrac{1}{2}\left(a+b+c\right)^2+3\left(a+b+c\right)-\dfrac{3}{2}\)

Đặt \(a+b+c=x\Rightarrow\sqrt{3}\le x\le3\)

\(P=\dfrac{1}{2}x^2+3x-\dfrac{3}{2}=\dfrac{1}{2}\left(x-\sqrt{3}\right)\left(x+6+\sqrt{3}\right)+3\sqrt{3}\ge3\sqrt{3}\)

\(P_{min}=3\sqrt{3}\) khi \(x=\sqrt{3}\) hay \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và hoán vị

VAN NGOC LE NA
22 tháng 6 2021 lúc 9:45

thế bạn bt hok

Khách vãng lai đã xóa
Phạm Minh Cường
Xem chi tiết
Nguyễn Ngọc Anh Minh
26 tháng 12 2023 lúc 13:38

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)

\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1+1+1}{a+b+c}=\dfrac{3}{a+b+c}=\dfrac{3}{1}=3\)

\(\Rightarrow a=b=c=\dfrac{1}{3}\)

\(\Rightarrow A=\dfrac{a^3\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=a^3=\left(\dfrac{1}{3}\right)^3=\dfrac{1}{27}\)

Nguyễn Thế Quang
Xem chi tiết