Giá trị của ab + bc + ca biết a + b + c = 13 và a 2 +b 2 + c2 = 85
giá trị của ab+bc+ca biết a+b+c=13 vaf a^2+b^2+c^2=85
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=\)
\(=\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)=13^2=169\)
\(\Rightarrow85+2\left(ab+bc+ca\right)=169\Rightarrow ab+bc+ca=42\)
(a +b+c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc ( hằng đẳng thức mở rộng )
132 = 85 + 2 ( ab + bc +ca )
\(\Rightarrow\)ab + bc + ca = (169 - 85) :2 = 42
Các bạn giải giúp mình nhé:
c1: giá trị nhỏ nhất của
-x\(^2\)+3x+5
c2: giá trị của ab+bc+ca biết a+b+c=13 và a\(^2\)+b\(^2\)+c\(^2\)=85
c3: giá trị của x để
(2x+1/4)\(^2\)+2016 để đạt giá trị nhỏ nhất.
Tính giá trị của ab + bc +ca biết a+b+c=13 và a^3+b^2+c^2=85
Tìm các giá trị của a,b,c để phấn thức sau được xác định a 2 + b 2 + c 2 ( a + b + c ) 2 + ( a b + b c + c a ) 2 ( a + b + c ) 2 - ( a b + b c + c a )
Cho phân thức M=(a2+b2+c2)(a+b+c)2+(ab+bc+ca)2 / (a+b+c)2-(ab+bc+ca)
a,Tìm các giá trị của a,b,c để phân thức được xác định(tức để mẫu ≠0)
b,Rút gọn M
a: ĐKXĐ: \(\left(a+b+c\right)^2-\left(ab+bc+ca\right)<>0\)
=>\(a^2+b^2+c^2+2\left(ab+ac+bc\right)-\left(ab+ac+bc\right)<>0\)
=>\(a^2+b^2+c^2+ab+ac+bc<>0\)
=>\(2a^2+2b^2+2c^2+2\left(ab+ac+bc\right)<>0\)
=>\(\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(a^2+2ac+c^2\right)<>0\)
=>\(\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2<>0\)
Dấu '=' xảy ra khi \(\begin{cases}a+b=0\\ b+c=0\\ a+c=0\end{cases}\Rightarrow a=b=c=0\)
=>Để M xác định thì \(a^2+b^2+c^2<>0\)
b: \(\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2+\left(ab+ac+bc\right)^2\)
\(=\left(a^2+b^2+c^2\right)\left\lbrack a^2+b^2+c^2+2\left(ab+ac+bc\right)\right\rbrack+\left(ab+ac+bc\right)^2\)
\(=\left(a^2+b^2+c^2\right)^2+2\left(a^2+b^2+c^2\right)\left(ab+ac+bc\right)+\left(ab+ac+bc\right)^2\)
\(=\left(a^2+b^2+c^2+ab+ac+bc\right)^2\)
\(\left(a+b+c\right)^2-ab-ac-bc\)
\(=a^2+b^2+c^2+2\left(ab+ac+bc\right)-\left(ab+ac+bc\right)\)
\(=a^2+b^2+c^2+ab+ac+bc\)
Ta có: \(M=\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2+\left(ab+ac+bc\right)^2}{\left(a+b+c\right)^2-ab-ac-bc}\)
\(=\frac{\left(a^2+b^2+c^2+ab+ac+bc\right)^2}{\left(a^2+b^2+c^2+ab+ac+bc\right)}\)
\(=a^2+b^2+c^2+ab+ac+bc\)
xét các số thực a,b,c t/m 0≤a,b,c≤2 và a+b+c=3. tìm giá trị nhỏ nhất của biểu thức
P=a2+b2+c2+\(\dfrac{\left(ab+bc+ca\right)^3+8}{ab+bc+ca}\)
mình đang cần gấp ,mọi người giúp mình nhé
cho a,b,c là các số thực thỏa mãn a,b≥0;0≤c≤1 và a2+b2+c2 =3.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=ab+bc+ca+3(a+b+c)
\(P\le a^2+b^2+c^2+3\sqrt{3\left(a^2+b^2+c^2\right)}=12\)
\(P_{max}=12\) khi \(a=b=c=1\)
Lại có: \(\left(a+b+c\right)^2=3+2\left(ab+bc+ca\right)\ge3\Rightarrow a+b+c\ge\sqrt{3}\)
\(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)
\(\Rightarrow\sqrt{3}\le a+b+c\le3\)
\(P=\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}+3\left(a+b+c\right)\)
\(P=\dfrac{1}{2}\left(a+b+c\right)^2+3\left(a+b+c\right)-\dfrac{3}{2}\)
Đặt \(a+b+c=x\Rightarrow\sqrt{3}\le x\le3\)
\(P=\dfrac{1}{2}x^2+3x-\dfrac{3}{2}=\dfrac{1}{2}\left(x-\sqrt{3}\right)\left(x+6+\sqrt{3}\right)+3\sqrt{3}\ge3\sqrt{3}\)
\(P_{min}=3\sqrt{3}\) khi \(x=\sqrt{3}\) hay \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và hoán vị
Cho a, b, c là ba số khác 0 thỏa mãn: ab/a+b=bc/b+c=ca/c+a ( với giả thiết các tỉ số đều có nghĩa) và a+b=c=1 tính giá trị của biểu thức A=abc(a2+b2+c2)/ab+bc+ca
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1+1+1}{a+b+c}=\dfrac{3}{a+b+c}=\dfrac{3}{1}=3\)
\(\Rightarrow a=b=c=\dfrac{1}{3}\)
\(\Rightarrow A=\dfrac{a^3\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=a^3=\left(\dfrac{1}{3}\right)^3=\dfrac{1}{27}\)
Cho a, b, c là các số thực thỏa mãn a ≥ 3 và abc = 1. Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{2}{3}\).a2 + b2 + c2 - (ab + bc + ca).