Cho số tự nhiên n,chứng minh rằng 3n + 2 và 4n + 3 là hai số nguyên tố cùng nhau
Đề học sinh giỏi cho các bồ nha
Bài 1: 1) Chứng minh rằng hai số tự nhiên liên tiếp nguyên tố cùng nhau.
2) Tìm hai số tự nhiên biết rằng tổng của chúng là 168, ƯCLN của chúng bằng 12.
3) Tìm hai số tự nhiên biết hiệu của chúng là 168, ƯCLN của chúng bằng 56, các số đó trong khoảng từ 600 đến 800.
4) Chứng minh rằng: 3n + 1 và 4n + 1 (n N) là 2 nguyên tố cùng nhau.
5) Biết rằng 4n + 3 và 5n + 2 là hai số không nguyên tố cùng nhau. Tìm ƯCLN (4n + 3, 5n + 2)
mk cx hok bồi nek
sao thấy đề bồi này nó cứ dễ sao ấy
Chứng minh rằng số tự nhiên n là các số nguyên tố cùng nhau:
a) 2n+1 và 3n+2
b)2n+2 và 5n+3 c) 3n+1 và 4n+1
a)nếu 2n+1 và 3n+2 là các số nguyên tố cùng nhau thì chúng phải có ƯCLN =1
giả sử ƯCLN(2n+1,3n+2)=d
=>2n+1 chia hết cho d , 3n+2 chia hết cho d
=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d
=>6n+3 chia hết cho d, 6n +4 chia hết cho d
=>(6n+4) - (6n+3) chia hết cho d
=>6n+4-6n-3=1 chia hết cho d
=>d=1
vậy ƯCLN(2n+1,3n+2)=1 (đpcm)
đpcm là điều phải chứng minh
1. Cho a =5n +3 và 6n+ 1 là hai số tự nhiên không nguyên tố cùng nhau. Tìm ước chung lớn nhất của 2 số này. 2. (Ams 2015) Chứng minh với mọi số tự nhiên n ta luôn có hai số A = 4n + 3 và B = 5n+ 4 là hai số nguyên tố cùng nhau. 3.Chứng minh rằng với mọi số tự nhiên n ta có hai số 2n + 1 và 6n + 5 là nguyên tố cùng nhau. 4. Chứng minh rằng 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau với mọi số tự nhiên n 5. Chứng minh nếu (a; b) = 1 thì (5a + 3b; 13a+8b) = 1.
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
1. Cho a =5n +3 và 6n+ 1 là hai số tự nhiên không nguyên tố cùng nhau. Tìm ước chung lớn nhất của 2 số này. 2. (Ams 2015) Chứng minh với mọi số tự nhiên n ta luôn có hai số A = 4n + 3 và B = 5n+ 4 là hai số nguyên tố cùng nhau. 3.Chứng minh rằng với mọi số tự nhiên n ta có hai số 2n + 1 và 6n + 5 là nguyên tố cùng nhau. 4. Chứng minh rằng 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau với mọi số tự nhiên n 5. Chứng minh nếu (a; b) = 1 thì (5a + 3b; 13a+8b) = 1.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
Chứng minh rằng với mọi số tự nhiên khác 0 thì 3n + 1 và 4n + 1 là hai số nguyên tố cùng nhau
Gọi d là UCLN của 3n + 1 và 4n + 1
=> 3n+1 ⋮ d => 12n+4 ⋮ d
4n+1 ⋮ d => 12n+3 ⋮ d
=> (12n+4) – (12n+3) ⋮ d
=> 1 ⋮ d => d = 1
Vậy 3n + 1 và 4n + 1 là hai số nguyên tố cùng nhau
Chứng minh rằng với mọi số tự nhiên khác 0 thì 3n + 1 và 4n + 1 là hai số nguyên tố cùng nhau
a)Cho a và b là hai số tự nhiên không nguyên tố cùng nhau.Biết a=4n+3 và b=5n+1(n\(\in\)N).Tìm ƯCLN(a,b)
b)Chứng minh rằng hai số sau đây nguyên tố cùng nhau:2n+5 và 3n+7
a/GỌI ƯCLN CỦA A VÀ B LÀ D
ƯCLN (4n+3;5n+1)=D
suy ra {4n+3 chia hết cho D
{5n+1 chia hết cho D
suy ra{5(4n+3) chia hết cho D
{4(5n+1) chi hết cho D
suy ra 5(4n+3)-4(5n+1) chia hết cho D
suy ra (20n+3)-(20n+1) chia hết cho D
suy ra 3 - 1 chia hết cho D
suy ra 2 chia hết cho D
SUY RA D thuộc Ư(2)
suy ra D =2 (tm đề bài)
VẬY ƯCLN của (a;b) = 2
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt
Cho số tự nhiên n , chứng minh 3n+2 và 4n+3 là hai số nguyên tố cùng nhau ?
( Các thần thánh giúp tớ với.chu mi nga,chu mi nga !!!!!!!! )
GỌI ƯỚC CHUNG LỚN NHẤT LÀ d
3n+2 chia hết d --->4 (3n+2) chia hết d--->12n+8 chia hết d
4n+3 chia hết d --->3 (4n+3) chia hết d--->12n+9 chia hết d
ta có: (12n+9)-(12n+8) chia hết d
---> 1 chia hết d ---> d bằng 1
--->3n+2 và 4n+3 là 2 số nguyên tố cùng nhau
>< TICK MÌNH NHA
Chứng minh rằng với mọi số tự nhiên n hai số 2n+ 3 và 4n + 8 là hai số nguyên tố cùng nhau
Giả sử: \(UCLN\left(2n+3;4n+8\right)=d\)
=> \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\) => \(\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
=> \(2⋮d\) => \(\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)
Có 2n+3 là số lẻ => \(2n+3⋮̸2\)
=> d = 1
=> đpcm