tính tỗng x+y+z biết:
x\(^2\)+ y\(^2\)+ z\(^2\)+ 2x- 4y+ 6z = -14
biết x^2+y^2+z^2+2x-4y+6z=-14 tính x+y+z
\(x^2+y^2+z^2+2x-4y+6z=-14\)
\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+\left(z^2+6z+9\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
\(\Leftrightarrow\begin{cases}x+1=0\\y-2=0\\z+3=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=-1\\y=2\\z=-3\end{cases}\)
\(\Rightarrow x+y+z=-1+2-3=-2\)
Biết x2+y2+z2+2x-4y+6z=-14. Tính x+y+z=???
tính x+y+z biết: x2+y2+z2+2x-4y+6z=-14
x2+2x+1+y2-4y+4+z2+6z+9=0
(x+1)2+(y-2)2+(z+3)2=0
(x+1)2 \(\ge0,\left(y-2\right)^2\ge0,\left(z+3\right)^2\ge0\)
mà tổng của chúng là 0 nên suy ra mỗi cái =0 nha
từ đó tính đc x,y,z
trả lời đầu tiên mk cho ko cần xét đúng sai
Có: \(x^2+y^2+z^2+2x-4y+6z=-14\)
\(\Leftrightarrow x^2+y^2+z^2+2x-4y+6z+14=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+\left(z^2+6z+9\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
Vì: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}}\)
\(\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2\ge0\)
Dấu = xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y-2=0\\z+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\\z=-3\end{cases}}\)
Do đó: \(\hept{\begin{cases}x=-1\\y=2\\z=-3\end{cases}}\)
Vậy: \(x+y+z=-1+2-3=-2\)
biết x^2+y^2+z^2 +2x-4y+6z=-14 tính x+y+z
giúp vs nha hihi
x2+y2+z2+2x-4y+6z=-14
=>x2+y2+z2+2x-4y+6z+14=0
=>(x2+2x+1)+(y2-4y+4)+(z2+6z+9)=0
=> (x+1)2+(y-2)2+(z+3)2=0
ta có:
(x+1)2≥0
(y-2)2≥0
(z+3)2≥0
=>(x+1)2+(y-2)2+(z+3)2≥0
dấu "=" xảy ra khi và chỉ khi ; x+1=y-2=z+3=0
=>\(\hept{\begin{cases}x=-1\\y=2\\z=-3\end{cases}}\)
=> x+y+z=-1+2+(-3)=-2
Tìm x,y,z biết x^2+y^2+z^2-2x-4y+6z=14
Tìm các số nguyên x,y,z thỏa mãn x^2+y^2+z^2+14=2x+4y+6z
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+\left(z^2-6z+9\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
Biết \(x^2+y^2+z^2+2x-4y+6z=-14\)
Tính \(x+y+z\)
\(^{x^2+y^2+z^2+2x-4y+6z=-14}\)
\(=x^2+2x+1+y^2-4y+4+z^2+6z+9=-14+14=0\)\(=\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)\(\Rightarrow\left(x+1\right)^2=0;\left(y-2\right)^2=0;\left(z+3\right)^2=0\)\(\Rightarrow x+1=0;y-2=0;z+3=0\)\(\Rightarrow x=-1;y=2;z=-3\Rightarrow x+y+z=-2\)
chứng minh x^2 +y^2+z^2+2x-4y-6z+14 >= 0 với mọi x y z
\(x^2+y^2+z^2+2x-4y-6z+14\)
\(=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+\left(z^2-6z+9\right)\)
\(=\left(x+1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2\)
Vì \(\left(x+1\right)^2\ge0\forall x\); \(\left(y-2\right)^2\ge0\forall y\); \(\left(z-3\right)^2\ge0\forall z\)
\(\Rightarrow\left(x+1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)
hay \(x^2+y^2+z^2+2x-4y-6z+14\ge0\)\(\forall x,y,z\)
Cho \(x^2+y^2+z^2+2x-4y+6z=-14\)
Tính \(x+y+z\)