Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Đức Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 2 2022 lúc 22:46

Đặt f(x)=0

=>(x-1)(x+2)=0

=>x=1 hoặc x=-2

Vì nghiệm của f(x) cũng là nghiệm của g(x) nên g(1)=0 và g(-2)=0

\(\Leftrightarrow\left\{{}\begin{matrix}1+a\cdot1^2+b\cdot1+2=0\\\left(-2\right)^3+a\cdot\left(-2\right)^2+b\cdot\left(-2\right)+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-3\\4a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)

Hoàng Kin
Xem chi tiết
Lan Anh
17 tháng 6 2021 lúc 15:56

cho : f (x) = 0

=> (x−1)(x+2)=0

=>x−1=0 và x+2=0

=>x=1vàx=-2

Vậy x = 1 và x = −2 là nghiệm của đa thức f (x)

Do nghiệm của f (x) cũng là nghiệm của g (x) nên x = 1 và x = −2 là nghiệm của g (x)

Ta có: g(1)=13+a⋅12+b⋅1+2=0

⇒1+a+b+2=0

⇒3+a+b=0

⇒b=−3−a (1)

 

Ta có: g(−2)=(−2)3+a⋅(−2)2+b⋅(−2)+2=0

⇒−8+4a−2b+2=0

⇒2⋅(−4)+2a+2a−2b+2=0

⇒2⋅(−4+a+a−b+1)=0

⇒(−3+2a−b)=0

=> 2a  b = 3 (2)

thay (1) vao (2) ta dc

2a−(−3−a)=3

⇒a=0

Do b=−3-a

=>b=3

Vậy a = 0 ; b = 3

 

Hiếu Nè
Xem chi tiết
迪丽热巴·迪力木拉提
28 tháng 5 2021 lúc 20:38

Ta có f(x)=0 <=> \(\left(x-1\right)\left(x+2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên 1 và -2 là nghiệm của đa thức g(x)

+Thay x=1, ta có: \(g\left(1\right)=1^3+a.1^2+b.1+2=0\Leftrightarrow1+a+b+2=0\Leftrightarrow a+b=-3\left(1\right)\)

+Thay x=-2, ta có: 

\(g\left(-2\right)=\left(-2\right)^3+a.2^2+b.\left(-2\right)+2=0\Leftrightarrow-8+4a-2b+2=0\Leftrightarrow4a-2b=6\left(2\right)\)

Từ (1) và (2) ta có hệ pt: \(\left\{{}\begin{matrix}a+b=-3\\4a-2b=6\end{matrix}\right.\) 

Giải hệ pt, ta được: a=0, b=-3.

YunTae
28 tháng 5 2021 lúc 20:41

Ta có : f(x) = 0 

⇔ ( x-1)(x+2) = 0 

⇔ \(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên x =1 hoặc x = -2 là nghiệm của g(x) 

Thay x = 1 vào g(x) = 0 

⇔ 13 + a.1+ b.1 + 2 = 0 

⇔ 1 + a + b + 2 = 0 

⇔ a + b = -3 (1) 

Thay x = -2 vào g(x) = 0 

⇔ (-2)3 + a.(-2)+ b.(-2) + 2 = 0 

⇔ -8 + a.4 - 2.b + 2 = 0 

⇔ 4a - 2b = 6 

⇔ 2.(2a - b ) = 6 

⇔ 2a - b = 3 (2) 

Từ (1) và (2) ⇒ \(\left\{{}\begin{matrix}a+b=-3\\2a-b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=0\\b=-3-a\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)

pham thi phuong trang
28 tháng 5 2021 lúc 20:55

 Để f (x) có nghiệm thì : f (x) = 0

=> (x−1)(x+2)=0

\(\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy x = 1 và x = −2 là nghiệm của đa thức f (x)

Do nghiệm của f (x) cũng là nghiệm của g (x) nên x = 1 và x = −2 là nghiệm của g (x)

⇒g(1)=13+a⋅12+b⋅1+2=0

⇒1+a+b+2=0

⇒3+a+b=0

⇒b=−3−a (1)

@) 

g(−2)=(−2)3+a⋅(−2)2+b⋅(−2)+2=0

⇒−8+4a−2b+2=0

⇒2⋅(−4)+2a+2a−2b+2=0

⇒2⋅(−4+a+a−b+1)=0

⇒(−3+2a−b)=0

=> 2a  b = 3 (2)

thay (1) vao (2) ta dc

2a−(−3−a)=3

⇒a=0

Do 2a−b=3

⇒b=−3Vậy a = 0 ; b = 3

 

đăng long
Xem chi tiết
hà nguyễn
Xem chi tiết
hà nguyễn
2 tháng 3 2022 lúc 7:27

giúp với

Nguyễn Lê Phước Thịnh
2 tháng 3 2022 lúc 23:05

Đặt f(x)=0

=>(x-1)(x+2)=0

=>x=1 hoặc x=-2

Vì nghiệm của f(x) cũng là nghiệm của g(x) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}1^3+a\cdot1^3+b\cdot1+2=0\\\left(-2\right)^3+a\cdot\left(-2\right)^3+b\cdot\left(-2\right)+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-3\\-8a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+2b=-6\\-8a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)

Vũ Quốc
Xem chi tiết
Nguyên
Xem chi tiết
Nguyễn Ngọc Huy Toàn
13 tháng 4 2022 lúc 13:01

Bài 1.

a.\(\left(x-8\right)\left(x^3+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)

\(\Leftrightarrow4x-3-x-5=30-3x\)

\(\Leftrightarrow4x-x+3x=30+5+3\)

\(\Leftrightarrow6x=38\)

\(\Leftrightarrow x=\dfrac{19}{3}\)

Akai Haruma
13 tháng 4 2022 lúc 13:03

Bài 1:

a. $(x-8)(x^3+8)=0$

$\Rightarrow x-8=0$ hoặc $x^3+8=0$

$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$

$\Rightarrow x=8$ hoặc $x=-2$

b.

$(4x-3)-(x+5)=3(10-x)$

$4x-3-x-5=30-3x$

$3x-8=30-3x$

$6x=38$
$x=\frac{19}{3}$

Akai Haruma
13 tháng 4 2022 lúc 13:05

Bài 2:

$f(x)=(x-1)(x+2)=0$

$\Leftrightarrow x-1=0$ hoặc $x+2=0$

$\Leftrightarrow x=1$ hoặc $x=-2$

Vậy $g(x)$ cũng có nghiệm $x=1$ và $x=-2$

Tức là:

$g(1)=g(-2)=0$

$\Rightarrow 1+a+b+2=-8+4a-2b+2=0$

$\Rightarrow a=0; b=-3$

๖ۣۜFriendͥZoͣnͫeツ~~Team...
Xem chi tiết
KAl(SO4)2·12H2O
6 tháng 8 2020 lúc 21:25

a) f(x) = 2x - 10 = 0

<=> 2x = 10

<=> x = 5

b) thay x = -1 vào đa thức, ta có:

g(-1) = a(-1)^3 + b(-1)^2 + c(-1) + d = 0

g(-1) = -a + b - c + d = 0

g(-1) = -a - c = -b - d

g(-1) = a + c = b + d (đpcm)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
6 tháng 8 2020 lúc 21:33

a) f(x) có nghiệm <=> 2x - 10 = 0

                              <=> 2x = 10

                              <=> x = 5

b) g(x) = ax3 + bx2 + cx + d

x = -1 là nghiệm của g(x) 

=> g(-1) = a(-1)3 + b(-1)2 + c(-1) + d = 0

=> g(-1) = -a + b - c + d = 0

=> g(-1) = -a - c = -b - d 

=> g(-1) = a + b = b + d 

=> đpcm 

Khách vãng lai đã xóa
ミ★Ƙαї★彡
6 tháng 8 2020 lúc 21:51

a,Đặt  \(f\left(x\right)=2x-10=0\)

\(\Leftrightarrow x=5\)

b, Thay x = -1 ta có :

\(g\left(x\right)=a\left(-1\right)^3+b\left(-1\right)^2+c\left(-1\right)+d\)

\(=-a+b-c+d\)Từ đây suy ra : \(-a-c=b+d\Rightarrow a+c=b+d\left(đpcm\right)\)

Khách vãng lai đã xóa
Son Le
Xem chi tiết
Son Le
3 tháng 11 2019 lúc 20:34

cho mình cảm ơn trước

Khách vãng lai đã xóa
Nguyễn Việt Lâm
3 tháng 11 2019 lúc 21:23

\(-x^2+x-1=--\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\)

\(f\left(x\right)=x^2-4x+4+5=\left(x-2\right)^2+5\ge5\)

\(f\left(x\right)_{min}=5\) khi \(x=2\)

Khách vãng lai đã xóa