1) Tim GTLN , GTNN nếu có :
A = 3y2 + 2y + 5
B = 2x - 5x2 - 3
tìm GTNN của biểu thức
E=x2+y2-x-2y+5
F=5x2-10x+3y2-6y+13
a)5X2 - 2y = 8
2X + y = 5
b) 2X + y = 3
X – 2y = 4
c) 3X + 3y = 1
2X – y = -8
d) 4X + 5y = 3
X – 5y = 5
a) ( 10x3y - 5x2y2 - 25 x4y3) : ( -5xy)
Ta có : -5xy( -2x2 + xy + 5x3y2) : ( - 5xy)
Vậy , ta được thương là : -2x2 + xy + 5x3y2
b) ( 27x3 - y3) : ( 3x - y)
Ta có : ( 3x - y)( 9x2 + 3xy + y2) : ( 3x - y)
Vậy , ta được thương là : 9x2 + 3xy + y2
C,D chịu
cho x 0,y 0, x y 2012. a, tim GTLN cua A 2x 2 8xy 2y 2 x 2 2xy y 2 b, tim GTNN cua B 1 2012 x 2 1 2012 y 2
Tìm GTLN của BT sau
-x2+3x
-5x2-2xy-2y2+14x+10y-1
-8x2-3y2-26x+6y+100
\(-5x^2-2xy-2y^2+14x+10y-1\\ =-\left(x^2+2xy+y^2\right)-\left(4x^2-2\cdot2\cdot\dfrac{7}{2}x+\dfrac{49}{4}\right)-\left(y^2-10y+25\right)+\dfrac{55}{4}\\ =-\left(x+y\right)^2-\left(2x-\dfrac{7}{2}\right)^2-\left(y-5\right)^2+\dfrac{55}{4}\le\dfrac{55}{4}\\ Max\Leftrightarrow\left\{{}\begin{matrix}x=-y\\2x=\dfrac{7}{2}\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=\dfrac{7}{4}\\y=5\end{matrix}\right.\Leftrightarrow x,y\in\varnothing\)
Vậy dấu \("="\) ko xảy ra
a: Ta có: \(-x^2+3x\)
\(=-\left(x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}\right)\)
\(=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
Tìm GTNN, GTLN (nếu có) của mỗi biểu thức sau:
a) A = |x + 2| + |x - 5|
b) B = |2x - 1| + |2y + 3| - 2017
a, Ta có: \(A=\left|x+2\right|+\left|x-5\right|=\left|x+2\right|+\left|5-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(A=\left|x+2\right|+\left|5-x\right|\ge\left|x+2+5-x\right|=\left|7\right|=7\)
Dấu " = " khi \(\left\{{}\begin{matrix}x+2\ge0\\5-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\le5\end{matrix}\right.\)
Vậy \(MIN_A=7\) khi \(-2\le x\le5\)
b, Ta có: \(\left\{{}\begin{matrix}\left|2x-1\right|\ge0\\\left|2y+3\right|\ge0\end{matrix}\right.\Leftrightarrow\left|2x-1\right|+\left|2y+3\right|\ge0\)
\(\Leftrightarrow B=\left|2x-1\right|+\left|2y+3\right|-2017\ge-2017\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left|2x-1\right|=0\\\left|2y+3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy \(MIN_B=-2017\) khi \(x=\dfrac{1}{2}\) và \(y=\dfrac{-3}{2}\)
\(\hept{\begin{cases}X^2+2X=X-3\\Y^2+2Y=Y-3\end{cases}}\)Tim GTNN,GTLN
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
cho x>0,y>0, x+y=2012.
a, tim GTLN cua A= (2x^2+8xy+2y^2)/ (x^2+2xy+y^2)
b, tim GTNN cua B=(1+(2012/x))^2+(1+(2012/y))^2
ìm gtln,gtnn của các biểu thức sau
A=|x-2|+|y+1|-5
B= -|2x+1|-|y-2|+3
a: \(A\ge-5\forall x,y\)
Dấu '=' xảy ra khi x=2 và y=-1
Bài 1: Tìm GTLN hoặc GTNN của biểu thức
a)A= -x2+2x+5
b)B= -x2-y2+4x+4y+2
c)C= x2+y2-2x+6y+12
\(a,-x^2+2x+5=-\left(x^2-2x-5\right)=-\left(x^2-2x+1-6\right)=-\left(x-1\right)^2+6\le6\)
dấu'=' xảy ra<=>x=1=>Max A=6
\(b,B=-x^2-y^2+4x+4y+2=-x^2+4x-4-y^2+4x-4+10\)
\(=-\left(x^2-4x+4\right)-\left(y^2-4x+4\right)+10\)
\(=-\left(x-2\right)^2-\left(y-2\right)^2+10=-\left[\left(x-2\right)^2+\left(y-2\right)^2\right]+10\le10\)
dấu"=" xảy ra<=>x=y=2=>Max B=10
\(c,C=x^2+y^2-2x+6y+12=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
dấu'=' xảy ra<=>x=1,y=-3=>MinC=2