P=(x+2y+1)^2+(x+2y+5)^2 tìm GTNN của P
cho x,y>0 thỏa mãn x+2y>=5 tìm GTNN của H=x^2+2y^2+1/x+24/y
cho x,y >0 thoả mãn x+2y>=5 tìm GTNN của x^2 +2y^2+1/x+24/y
Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Cho x, y thỏa mãn x +2y >=5. Tìm GTNN của G= x2 + 2y2 + 1/x + 24/y.
Dự đoán điểm rơi x = 1;y = 2 và làm thôi:3
Ta có: \(G=\left(x^2+1\right)+\left(2y^2+8\right)+\frac{1}{x}+\frac{24}{y}-9\)
\(\ge2x+8y+\frac{1}{x}+\frac{24}{y}-9=\left(x+\frac{1}{x}\right)+\left(6y+\frac{24}{y}\right)+x+2y-9\)
\(\ge2\sqrt{x.\frac{1}{x}}+2\sqrt{6y.\frac{24}{y}}+x+2y\ge2+24+5-9=22\)
Dấu "=" xảy ra khi x = 1;y=2
Vậy \(G_{min}=22\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
1. Cho x,y thỏa mãn 0 < x <= 2, 4 <= y < 5 và x + y = 6
Tìm GTNN: P = 1/x + 1/y
2. Cho x > 2y, xy = 1
Tìm GTNN: P = (x^2 + 4y^2)/(x-2y)
bài 1 chắc điểm rơi x=2;y=4, cách làm tạm thời mk chưa nghĩ ra
bài 2: P=(x^2+4y^2)/(x-2y)=[x^2+(2y)^2]/(x-2y)=[(x-2y)^2+4xy]/(x-2y)=(x-2y) + 4xy/(x-2y)=(x-2y)+4/(x-2y) do xy=1
Áp dụng bđt AM-GM , ta có P >/ 4 =>minP=4
đẳng thức xảy ra khi đồng thời x-2y=2,x>2y,xy=1 ,tự giải hệ này ra nhé
Cho x+2y=1. Tìm GTNN của B=x2+2y2
Nguồn : diendantoanhoc.net
Áp dụng BĐT Cauchy Schwarz có :
\(\left(x^2+2y^2\right)\left(1+2\right)\ge\left(x+2y\right)^2=1\)
\(\Rightarrow x^2+2y^2\ge\frac{1}{3}\)
Vậy ...
cho x+ 2y = 1.Tìm gtnn của P = x2 + 2y2
Ta có: x + 2y = 1 <=> x = 1 - 2y.
Thay vào P ta có:
P = (1 - 2y)2 + 2y2 = (1- 4y +4y2) + 2y2 = 6y2 - 4y+1 = 6(y2 - 2.1/3.y +1/9) + 1/3 = 6(y - 1/3)2 + 1/3 >= 1/3
Vậy P nhỏ nhất = 1/3 khi và chỉ khi 6(y - 1/3)2 = 0 <=> y - 1/3 = 0 <=> y = 1/3, x = 1 -2y = 1 - 2/3 = 1/3
Vậy P nhỏ nhất = 1/3 khi x = 1/3, y = 1/3
A=/X+1/+/2Y-4/+2
B=-5/[X+1]^2
TÌM GTNN,GTNN hộ mk nhé
cho x+ 2y = 1 tìm gtnn của P = x2 + 2y2
HELP MEE
ta có x2+2y2=x2+y2+y2
áp dụng bất đẳng thức bunhia copxki ta có
(12+12+12)(x2+y2+y2) >hoặc=(x+y+y)2
3(x2+2y2) > hoặc = (x+2y)2
3(x2+2y2) > hoặc = 12
3(x2+2y2) > hoặc = 1
x2+2y2 > hoặc = 1/3
vậy gtnn của x2+2y2 là 1/3
Cho x-2y=5. Tìm GTNN của
M=\(x^2-3y^2-4y-1\)
\(x-2y=5\Rightarrow x=5+2y\)
\(\Rightarrow M=x^2-3y^2-4y-1=\left(5+2y\right)^2-3y^2-4y-1\)
\(=\left(4y^2+20y+25\right)-3y^2-4y-1\)
\(=y^2+16y+24\)
\(=\left(y^2+16y+64\right)-40\)
\(=\left(y+8\right)^2-40\ge-40\)
Dấu "=" xảy ra \(\Leftrightarrow\left(y+8\right)^2=0\Leftrightarrow y=-8\Rightarrow x=2y+5=-16+5=-11\)
Vậy GTNN của M là -40\(\Leftrightarrow x=-11;y=-8\)