Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn hoàng mai
Xem chi tiết
bùi quang đức
Xem chi tiết
Ngô Chi Lan
6 tháng 8 2020 lúc 16:10

Bài làm:

Ta có: \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.....\frac{30}{62}.\frac{31}{64}=2^x\)

\(\Leftrightarrow\frac{1.2.3.....30.31}{2.2.2.3.2.4.....2.31.2.32}=2^x\)

\(\Leftrightarrow\frac{1}{2^{31}.2^5}=2^x\)

\(\Leftrightarrow\frac{1}{2^{36}}=2^x\)

\(\Rightarrow x=-36\)

Khách vãng lai đã xóa
bùi quang đức
7 tháng 8 2020 lúc 7:27

mk cần cả giải thích

giúp mk vs!!!

Khách vãng lai đã xóa
nguyễn hoàng lê thi
Xem chi tiết
Phương An
17 tháng 7 2016 lúc 9:30

a.

\(\left(x+\frac{1}{2}\right)\times\left(x-\frac{3}{4}\right)=0\)

TH1:

\(x+\frac{1}{2}=0\)

\(x=-\frac{1}{2}\)

TH2:

\(x-\frac{3}{4}=0\)

\(x=\frac{3}{4}\)

Vậy \(x=-\frac{1}{2}\) hoặc \(x=\frac{3}{4}\)

b.

\(\left(\frac{1}{2}x-3\right)\times\left(\frac{2}{3}x+\frac{1}{2}\right)=0\)

TH1:

\(\frac{1}{2}x-3=0\)

\(\frac{1}{2}x=3\)

\(x=3\div\frac{1}{2}\)

\(x=3\times2\)

\(x=6\)

TH2:

\(\frac{2}{3}x+\frac{1}{2}=0\)

\(\frac{2}{3}x=-\frac{1}{2}\)

\(x=-\frac{1}{2}\div\frac{2}{3}\)

\(x=-\frac{1}{2}\times\frac{3}{2}\)

\(x=-\frac{3}{4}\)

Vậy \(x=6\) hoặc \(x=-\frac{3}{4}\)

c.

\(\frac{2}{3}-\frac{1}{3}\times\left(x-\frac{3}{2}\right)-\frac{1}{2}\times\left(2x+1\right)=5\)

\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)

\(\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5-\frac{2}{3}\)

\(-\frac{4}{3}x=\frac{13}{3}\)

\(x=\frac{13}{3}\div\left(-\frac{4}{3}\right)\)

\(x=\frac{13}{3}\times\left(-\frac{3}{4}\right)\)

\(x=-\frac{13}{4}\)

d.

\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)

\(4x-x-\frac{1}{2}=2x-\frac{1}{2}+5\)

\(4x-x-2x=\frac{1}{2}-\frac{1}{2}+5\)

\(x=5\)

nguyễn hoàng mai
Xem chi tiết
Hằng Lê Nguyệt
18 tháng 7 2016 lúc 8:53

a) \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)\(5\)

=> \(\frac{2}{3}-\left(\frac{1}{3}x-\frac{1}{2}\right)-\left(x+\frac{1}{2}\right)=5\)

=>\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)

=>\(\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5\)

=>\(\frac{2}{3}-\frac{4}{3}x=5\)

=>\(\frac{4}{3}x=\frac{2}{3}-5=-\frac{13}{3}\)

=>\(x=-\frac{13}{3}:\frac{4}{3}=-\frac{13}{4}\)

b)\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)

=>\(4x-x-\frac{1}{2}=2x-\left(-\frac{9}{2}\right)\)

=> \(3x-\frac{1}{2}=2x-\left(-\frac{9}{2}\right)\)

=>\(x=-\left(-\frac{9}{2}\right)+\frac{1}{2}=5\)

Trần Hà Nhung
Xem chi tiết
Anna
20 tháng 6 2018 lúc 7:57

\(\Leftrightarrow2.\left(\frac{-1}{2}\right).\left(\frac{2}{3}\right)^2-3\left(-\frac{1}{3}\right)^2.\frac{2}{9}:x=3.\left(-\frac{1}{2}\right)-\frac{2}{3}\)

\(\Leftrightarrow-\frac{4}{9}-\frac{1}{3}.\frac{2}{9}:x=-\frac{3}{2}-\frac{2}{3}\)

\(\Leftrightarrow-\frac{4}{6}-\frac{2}{27}:x=-\frac{13}{6}\)

\(\Leftrightarrow\frac{2}{27}:x=-\frac{4}{9}:\frac{-13}{6}\)

\(\Leftrightarrow\frac{2}{27}:x=\frac{31}{18}\)

\(\Leftrightarrow x=\frac{2}{27}:\frac{31}{18}\)

\(\Rightarrow x=\frac{4}{93}\)

Vậy \(x=\frac{4}{93}\)

NTP-Hoa(#cđln)
Xem chi tiết
Lê Ng Hải Anh
11 tháng 11 2018 lúc 21:27

\(A=\left(\sqrt{x}+2\right):\left(\frac{x+8}{x\sqrt{x}+8}+\frac{\sqrt{x}}{x-2\sqrt{x}+4}-\frac{1}{2+\sqrt{x}}\right)\)

\(=\left(\sqrt{x}+2\right):\left(\frac{x+8+\sqrt{x}\left(\sqrt{x}+2\right)-\left(x-2\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)

\(=\left(\sqrt{x}+2\right):\left(\frac{x+8+x+2\sqrt{x}-x+2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)

\(=\left(\sqrt{x}+2\right):\left(\frac{x+4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)

\(=\left(\sqrt{x}+2\right):\left[\frac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right]\)

\(=\left(\sqrt{x}+2\right):\frac{\sqrt{x}+2}{x-2\sqrt{x}+4}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}{\sqrt{x}+2}\)

\(=x-2\sqrt{x}+4\)

=.= hok tốt!!

phantuananh
Xem chi tiết
Lightning Farron
30 tháng 5 2016 lúc 6:07

PT cho tđuong với: (x^2 +9). (x^2 + 9x) = 22 (x-1)^2
Đặt t = [x^2 + 9 + x^2 + 9x]/2 hay t= x^2 + (9x + 9)/2. 
Khi đó: x^2 + 9 = t - 9(x-1)/2 
x^2 + 9x = t + 9(x-1)/2 
PT cho trở thành: [t - 9(x-1)/2]. [t + 9(x-1)/2] = 22(x-1)^2 
<=> t^2 -(81/4)(x-1)^2 = 22(x-1)^2 
<=> t^2 = (169/4)(x-1)^2 
<=> t = 13/2. (x-1) hoặc t= -13/2. (x-1) 
<=> 2t =13x -13 hoặc 2t =-13x + 13 
hay 2x^2 + 9x+ 9 =13x -13 hoặc 2x^2 + 9x +9 = -13x +13 
hay 2x^2 - 4x +22 =0 hoặc 2x^2 + 22x - 4 =0 

PT bậc hai thứ nhất vô nghiệm, PT bậc hai thứ hai cho ta hai nghiệm là: 
x= (-11 +căn(129))/2 , x= (-11 - căn(129))/2. 
 

Lightning Farron
30 tháng 5 2016 lúc 6:08

cách 2:đặt x-1=k

pt trở thành (k+1)(k2+2k+10)(k+10)=22k2

<=>(k2+2k+10)(k2+11k+10)=22k2

tự làm tiếp

Lightning Farron
30 tháng 5 2016 lúc 6:10

cách 3:tui ko nhớ rõ nhưng nhân tung rồi nhóm lại là đc

NTP-Hoa(#cđln)
Xem chi tiết
Phùng Minh Quân
13 tháng 7 2019 lúc 21:41

câu a) sáng giải

b) \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}=\frac{4^2}{2}=8>4\) vô nghiệm 

Phùng Minh Quân
14 tháng 7 2019 lúc 17:01

a) ĐK: \(x,y\ne-1\)

\(\hept{\begin{cases}x^2+y^2+x+y=\left(x+1\right)\left(y+1\right)\left(1\right)\\\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=1\left(2\right)\end{cases}}\)

(1) \(\Leftrightarrow\)\(\frac{x^2+x}{\left(x+1\right)\left(y+1\right)}+\frac{y^2+y}{\left(x+1\right)\left(y+1\right)}=1\)

\(\Leftrightarrow\)\(\frac{x\left(x+1\right)}{\left(x+1\right)\left(y+1\right)}+\frac{y\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}=1\)

\(\Leftrightarrow\)\(\frac{x}{y+1}+\frac{y}{x+1}=1\) (3) 

(2) \(\Leftrightarrow\)\(\left(\frac{x}{y+1}+\frac{y}{x+1}\right)^2-\frac{2xy}{\left(x+1\right)\left(y+1\right)}=1\)

\(\Leftrightarrow\)\(2xy=\left(x+1\right)\left(y+1\right)\)

Lại có: \(\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2\ge2\sqrt{\left(\frac{xy}{\left(x+1\right)\left(y+1\right)}\right)^2}=2\sqrt{\frac{1}{4}}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{x}{y+1}=\frac{y}{x+1}\)

\(\Rightarrow\)\(\hept{\begin{cases}\frac{2x}{y+1}=1\\2\left(\frac{x}{y+1}\right)^2=1\end{cases}\Leftrightarrow\left(\frac{x}{y+1}\right)^2-\frac{x}{y+1}=0\Leftrightarrow\frac{x}{y+1}\left(\frac{x}{y+1}-1\right)=0}\)

\(\Rightarrow\)\(\orbr{\begin{cases}\frac{x}{y+1}=0\\\frac{x}{y+1}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=y+1\end{cases}\Leftrightarrow}x=y+1}\)

Thay x=y+1 vào (3) ta được: \(\frac{y}{x+1}=0\)\(\Leftrightarrow\)\(y=0\)\(\Rightarrow\)\(x=1\) ( tương tự với y ta cũng được x=0;y=1 ) 

tập nghiệm của pt \(\left(x,y\right)=\left\{\left(0;1\right),\left(1;0\right)\right\}\)

b) ĐK: \(x,y\ne0\) còn cách khác là dùng cosi nhé, VD: \(\hept{\begin{cases}x+\frac{1}{x}+y+\frac{1}{y}=4\left(1\right)\\\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{y}\right)^2=4\left(2\right)\end{cases}}\)

lấy (1) + (2) và cộng 2 vào 2 vế của pt mới ta được: 

\(10=a^2+1+b^2+1+\left(a+b\right)\ge2\sqrt{a^2}+2\sqrt{a^2}+4=12\)

\(\Rightarrow\)\(10\ge12\) (vô lí) => hpt vô nghiệm 

Nguyễn Thị Hà Anh
Xem chi tiết
๖²⁴ʱTú❄⁀ᶦᵈᵒᶫ
13 tháng 3 2020 lúc 20:33

phá ngoặc tính BT , nên kết quả sẽ ko ra con số nhận định !!! tui thử thui nha bà  !

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|y-5\right|+\left|x+\frac{1}{4}\right|=\frac{1}{4}\)

\(x+\frac{1}{2}+x+\frac{1}{3}+y-5+x+\frac{1}{4}=\frac{1}{4}\)

\(3x+y-\frac{47}{12}=\frac{1}{4}\)

\(3x+y=\frac{25}{6}\)

\(3x=\frac{25}{6}-y\)

\(x=\frac{25-25y}{18}\)

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|y-5\right|+\left|x+\frac{1}{4}\right|=\frac{1}{4}\)

\(x+\frac{1}{2}+x+\frac{1}{3}+y-5+x+\frac{1}{4}=\frac{1}{4}\)

\(3x+y-\frac{47}{12}=\frac{1}{4}\)

\(3x+y=\frac{25}{6}\)

\(y=\frac{25}{6}-3x\)

Vậy \(x=\frac{25-25y}{18}\)

\(y=\frac{25}{6}-3x\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
17 tháng 3 2020 lúc 20:45

Ta có:

 \(|x+\frac{1}{2}|\ge x+\frac{1}{2}\forall x;|x+\frac{1}{3}|\ge x+\frac{1}{3}\forall x;|y-5|\ge y-5\forall y;|x+\frac{1}{4}|\ge x+\frac{1}{4}\forall x\)

\(\Rightarrow|x+\frac{1}{2}|+|x+\frac{1}{3}|+|y-5|+|x+\frac{1}{4}|\ge x+\frac{1}{2}+x+\frac{1}{3}+y-5+x+\frac{1}{4}\)

Mà \(|x+\frac{1}{2}|+|x+\frac{1}{3}|+|y-5|+|x+\frac{1}{4}|=\frac{1}{4}\)

\(\Rightarrow\frac{1}{4}\ge x+\frac{1}{2}+x+\frac{1}{3}+y-5+x+\frac{1}{4}\)

\(\Rightarrow\frac{1}{4}\ge3x+y-\frac{47}{12}\)

\(\Rightarrow3x+y\le\frac{25}{6}\)

\(\Rightarrow x\le\frac{\frac{25}{6}-y}{3}\)

Thay vào tính y

Khách vãng lai đã xóa
Linh
17 tháng 3 2020 lúc 21:24

Làm phiền bạn Quỳnh

Bạn bảo thay vào tính y? Vậy bạn trình bày cho mình phần cuối. 

Bạn đang nhầm vấn đề nhé. (2 dòng cuối) 

Vd: a + b = 5 

<=> a = 5 - b

Thay a vào: 5 - b + b = 5 

<=> 0 = 0 ???

Bạn tính ra r bạn đưa lên bth bên trên??? Mình thấy bạn làm vậy thì k thể tìm ra a, b. Có thể mình k hiểu ý bạn. Nếu v bạn trình bày giúp mình phần cuối vì mình không hiểu ý bạn. Thankbạn. 

Khách vãng lai đã xóa